Структурно-функциональной единицей скелетной мышцы является симпласт или мышечное волокно - огромная клетка, имеющая форму протяженного цилиндра с заостренными краями (под наименованием симпласт, мышечное волокно, мышечная клетка следует понимать один и тот же объект).

Длина мышечной клетки чаще всего соответствует длине целой мышцы и достигает 14 см, а диаметр равен нескольким сотым долям миллиметра.

Мышечное волокно , как и любая клетка, окружено оболочкой - сарколемой. Снаружи отдельные мышечные волокна окружены рыхлой соединительной тканью, которая содержит кровеносные и лимфатические сосуды, а так же нервные волокна.

Группы мышечных волокон, образуют пучки, которые, в свою очередь, объединяются в целую мышцу, помещенную в плотный чехол соединительной ткани переходящей на концах мышцы в сухожилия, крепящиеся к кости (рис.1).

Рис. 1.

Усилие, вызываемое сокращением длины мышечного волокна, передается через сухожилия костям скелета и приводит их в движение.

Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов (рис. 2) - нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления - аксоны в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну.

Рис. 2.

Таким образом, один мотонейрон иннервирует целую группу волокон (так называемая нейромоторная единица), которая работает как единое целое.

Мышца состоит из множества нервно моторных единиц и способна работать не всей своей массой, а частями, что позволяет регулировать силу и скорость сокращения.

Для понимания механизма сокращения мышцы необходимо рассмотреть внутреннее строение мышечного волокна, которое, как вы уже поняли, сильно отличается от обычной клетки. Начнем с того, что мышечное волокно многоядерно. Связано это с особенностями формирования волокна при развитии плода. Симпласты (мышечные волокна) образуются на этапе эмбрионального развития организма из клеток предшественников - миобластов.

Миобласты (неоформленные мышечные клетки) интенсивно делятся, сливаются и образуют мышечные трубочки с центральным расположением ядер. Затем в мышечных трубочках начинается синтез миофибрилл (сократительных структур клетки см. ниже), и завершается формирование волокна миграцией ядер на периферию. Ядра мышечного волокна к этому времени уже теряют способность к делению, и за ними остается только функция генерации информации для синтеза белка.

Но не все миобласты идут по пути слияния, часть из них обособляется в виде клеток-сателлитов, располагающихся на поверхности мышечного волокна, а именно в сарколеме, между плазмолемой и базальной мембраной - составными частями сарколемы. Клетки-сателлиты, в отличие от мышечных волокон, не утрачивают способность к делению на протяжении всей жизни, что обеспечивает увеличение мышечной массы волокон и их обновление. Восстановление мышечных волокон при повреждении мышцы возможно благодаря клеткам-сателлитам. При гибели волокна, скрывающиеся в его оболочке, клетки-сателиты активизируются, делятся и преобразуются в миобласты.

Миобласты сливаются друг с другом и образуют новые мышечные волокна, в которых затем начинается сборка миофибрилл. То есть при регенерации полностью повторяются события эмбрионального (внутриутробного) развития мышцы.

Помимо многоядерности отличительной чертой мышечного волокна является наличие в цитоплазме (в мышечном волокне ее принято называть саркоплазмой) тонких волоконец – миофибрилл (рис.1), расположенных вдоль клетки и уложенных параллельно друг другу. Число миофибрилл в волокне достигает двух тысяч.

Миофибриллы являются сократительными элементами клетки и обладают способностью уменьшать свою длину при поступлении нервного импульса, стягивая тем самым мышечное волокно. Под микроскопом видно, что миофибрилла имеет поперечную исчерченность - чередующиеся темные и светлые полосы.

При сокращении миофибриллы светлые участки уменьшают свою длину и при полном сокращении исчезают вовсе. Для объяснения механизма сокращения миофибриллы около пятидесяти лет назад Хью Хаксли была разработана модель скользящих нитей, затем она нашла подтверждение в экспериментах и сейчас является общепринятой.

ЛИТЕРАТУРА

  1. МакРоберт С. Руки титана. – М.: СП " Уайдер спорт", 1999.
  2. Остапенко Л. Перетренированность. Причины возникновения перетренированности при силовом тренинге // Ironman, 2000, № 10-11.
  3. Солодков А. С., Сологуб Е. Б. Физиология спорта: Учебное пособие. – СПб: СПбГАФК им. П.Ф. Лесгафта, 1999.
  4. Физиология мышечной деятельности: Учебник для институтов физической культуры / Под ред. Коца Я. М. – М.: Физкультура и спорт, 1982.
  5. Физиология человека (Учебник для институтов физической культуры. Изд. 5-е). / Под ред. Н. В. Зимкина. – М.: Физкультура и спорт, 1975.
  6. Физиология человека: Учебник для студентов медицинских институтов / Под ред. Косицкого Г. И. - М.: Медицина, 1985.
  7. Физиологические основы спортивной тренировки: Методические указания по спортивной физиологии. – Л.: ГДОИФК им. П.Ф. Лесгафта, 1986.

Скелетные мышцы включают в себя: поверхностные мышцы спины, глубокие мышцы спины, мышцы, действующие на суставы плечевого пояса, собственные мышцы груди, диафрагму, мышцы живота, мышцы шеи, мышцы головы, мышцы плечевого пояса, мышцы свободной верхней конечности, мышцы таза, мышцы свободной нижней конечности.

Скелетные мышцы прикрепляются к костям скелета и приводят их в движение. Кроме того, скелетные мышцы участвуют в образовании полостей тела: ротовой, грудной, брюшной, таза. Скелетные мышцы участвуют в движении слуховых косточек.

При помощи скелетных мышц организм человека перемещается в пространстве, удерживает статическое равновесие, осуществляются глотательные, дыхательные движения, формируется мимика лица.

Общая масса скелетной мускулатуры составляет до 40% массы тела. В теле человека до 400 мышц, состоящих из скелетной мышечной ткани.

Скелетные мышцы сокращаются под воздействием центральной нервной системы, приводят в действие костные рычаги, образованные костями и суставами.

Скелетная мускулатура состоит из многоядерных мышечных волокон сложного строения, в которых чередуются темные и светлые участки. Поэтому скелетную мускулатуру называют мускулатурой, состоящей из поперечнополосатой мышечной ткани (мышца сердца также состоит из поперечнополосатой мускулатуры). Сокращение скелетных мышц контролируется сознанием.

Каждая мышца состоит из пучков поперечнополосатых мышечных волокон, которые имеют оболочку - эндомизий. Пучки мышечных волокон отграничены друг от друга прослойками, образующими перимизий. Вся мышца имеет оболочку, эпимизий, которая продолжается в сухожилие.

Мышечные пучки образуют мясистую часть мышц -брюшко. С помощью сухожилий мышца прикрепляется к кости. У длинных мышц конечностей сухожилия длинные и узкие. Некоторые мышцы, формирующие стенки полости организма, имеют широкие и плоские сухожилия, которые называются апоневрозами.

Некоторые мышцы имеют сухожильные перемычки (например - прямая мышца живота).

При сокращении мышцы один ее конец остается неподвижным. Это место рассматривают как фиксированную точку. Подвижной точкой мышца прикрепляется к кости, которая при сокращении мышцы изменит свое положение.

К вспомогательным аппаратам мышц относят фасции, влагалища сухожилий, синовиальные сумки и блоки мышц.

Фасции - это покровы мышц, состоящие из соединительной ткани. Они образуют футляры для мышц, отграничивают мышцы друг от друга, устраняют трение мышц друг об друга.

Поверхностные фасции отграничивают мышцы от подкожной клетчатки, а глубокие фасции, располагаясь между соседними мышцами, разделяют эти мышцы в том случае, если мышцы лежат в несколько слоев.

Между группами мышц различного функционального назначения проходят межмышечные перегородки, которые, соединяясь с фасциями мышц и срастаясь с надкостницей, образуют мягкую основу для мышц.

Влагалища сухожилий - это каналы из соединительной ткани, в которых проходит сухожилие до места своего прикрепления к кости (встречаются в ступнях, кистях и других участках конечностей). В сухожильном влагалище может проходить несколько сухожилий, в этом случае сухожилия могут быть отделены перегородками друг от друга.

Движение в сухожильном влагалище происходит с помощью синовиального влагалища. Это слой соединительной ткани, который состоит из двух частей - внутренней, окутывающей сухожилие со всех сторон и срастающейся с ним, и наружной, сращенной со стенкой сухожильного влагалища.

Между внутренней и наружной частями синовиального влагалища есть промежуток, заполненный синовиальной жидкостью. При сокращении сухожилия вместе с ним движется внутренняя часть (слой) синовиального влагалища. При этом синовиальная жидкость выполняет роль смазки, устраняя трение.

Синовиальные сумки располагаются в местах, где сухожилие или мышца прилежат к костному выступу. Эти синовиальные сумки выполняют роль влагалища сухожилий - также устраняют трение сухожилия или мышцы о костный выступ.

Стенки синовиальной сумки с одной стороны сращены с движущимся сухожилием или мышцей, а с другой - с костью или другим сухожилием. Размеры сумок различны. Полость синовиальной сумки, расположенной рядом с суставом, может сообщаться с суставной полостью.

Блоки мышц - встречаются в тех местах, где мышца меняет направление, перебрасывается через костные или другие образования. В этом случае на кости имеется выступ с хрящевым желобком для мышечного сухожилия. Между сухожилием и хрящевым желобком костного выступа располагается синовиальная сумка. Костный выступ называется блоком мышцы.

Мышцы подразделяются по их положению в теле человека, по форме, функции и т. д.

Мышцы бывают поверхностные и глубокие, наружные и внутренние, срединные (медиальные) и боковые (латеральные).

По форме мышцы разнообразны: веретенообразные мышцы (на конечностях), широкие мышцы, участвующие в образовании стенок тела.

У некоторых мышц волокна имеют циркулярные направления, такие мышцы окружают естественные отверстия тела, выполняя функцию сжимателей - жомов (сфинктеров).

Некоторые мышцы получили свое название по форме - ромбовидная, трапециевидная мышцы; другие мышцы называют по месту их прикрепления - плечелучевая и т. д.

Если мышца прикрепляется к костям одного сустава и действует только на один этот сустав, то эту мышцу называют односуставной, а если мышцы перекидываются на два и более суставов, то такие мышцы называются двусуставными, многосуставными.

Некоторые мышцы начинаются и прикрепляются к костям, не формирующим суставы (например мимические мышцы лица, мышцы дна рта).

Основное свойство скелетных мышц - сокращаться под действием нервных импульсов. Во время сокращения мышца укорачивается. Изменение ее длины влияет на костные рычаги, образованные костями, к которым мышцы прикрепляются.

Костные рычаги, соединенные посредством суставов, при этом изменяют положение тела или конечности в пространстве.

Возврат костного рычага в исходное положение осуществляется мышцами- антагонистами - т. е. мышцами, действующими на образующие сустав кости в противоположном направлении.

У жевательных и мимических мышц роль антагонистов выполняют эластические связки.

Как правило, в движении участвуют несколько мышц, усиливающих движение, - такие мышцы называют синергистами. В движении костных рычагов одни мышцы играют главную роль, другие - вспомогательную, обеспечивая нюансы движения.

Сила мышц составляет от 4 до 17 кг на 1 см2 ее поперечника.

Мышцы - одна из основных составляющих тела. Они основаны на ткани, волокна которой сокращаются под воздействием нервных импульсов, что позволяет телу двигаться и удерживаться в окружающей среде.

Мышцы располагаются в каждой части нашего тела. И даже если мы не знаем об их существовании, они все равно есть. Достаточно, например, первый раз сходить в тренажерный зал или позаниматься аэробикой - на следующий день у вас начнут болеть даже те мышцы, о наличии которых вы и не догадывались.

Они отвечают не только за движение. В состоянии покоя мышцы тоже требуют энергии, чтобы поддерживать себя в тонусе. Это необходимо для того, чтобы в любой момент определенная смогла ответить на нервный импульс соответствующим движением, а не тратила время на подготовку.

Чтобы понять, как устроены мышцы, предлагаем вспомнить основы, повторить классификацию и заглянуть в клеточное Также мы узнаем о болезнях, которые могут ухудшить их работу, и о том, как укрепить скелетную мускулатуру.

Общие понятия

По своему наполнению и происходящим реакциям мышечные волокна делятся на:

  • поперечно-полосатые;
  • гладкие.

Скелетные мышцы - продолговатые трубчатые структуры, количество ядер в одной клетке которых может доходить до нескольких сотен. Состоят они из мышечной ткани, которая прикреплена к различным частям костного скелета. Сокращения поперечно-полосатых мышц способствуют движениям человека.

Разновидности форм

Чем различаются мышцы? Фото, представленные в нашей статье, помогут нам в этом разобраться.

Скелетные мышцы являются одной из главных составляющих опорно-двигательной системы. Они позволяют двигаться и сохранять равновесие, а также задействованы в процессе дыхания, голосообразования и других функциях.

В организме человека насчитывается более 600 мышц. В процентном соотношении их общая масса составляет 40% от общей массы тела. Мышцы классифицируются по форме и строению:

  • толстые веретенообразные;
  • тонкие пластинчатые.

Классификация упрощает изучение

Деление скелетных мышц на группы осуществляется в зависимости от места нахождения и значения их в деятельности различных органов тела. Основные группы:

Мышцы головы и шеи:

  • мимические - задействуются при улыбке, общении и создании различных гримас, обеспечивая при этом движение составляющих частей лица;
  • жевательные - способствуют смене положения челюстно-лицевого отдела;
  • произвольные мышцы внутренних органов головы (мягкого неба, языка, глаз, среднего уха).

Группы скелетных мышц шейного отдела:

  • поверхностные - способствуют наклонным и вращательным движениям головы;
  • средние - создают нижнюю стенку ротовой полости и способствуют движению вниз челюсти, и гортанных хрящей;
  • глубокие осуществляют наклоны и повороты головы, создают поднятие первого и второго ребер.

Мышцы, фото которых вы видите здесь, отвечают за туловище и делятся на мышечные пучки следующих отделов:

  • грудной - приводит в действие верхнюю часть торса и руки, а также способствует изменению положения ребер при дыхании;
  • отдел живота - дает движение крови по венам, осуществляет изменения положения грудной клетки при дыхании, воздействует на функционирование кишечного тракта, способствует сгибанию туловища;
  • спинной - создает двигательную систему верхних конечностей.

Мышцы конечностей:

  • верхние - состоят из мышечных тканей плечевого пояса и свободной верхней конечности, помогают двигать рукой в плечевой суставной сумке и создают движения запястья и пальцев;
  • нижние - играют основную роль при передвижении человека в пространстве, подразделяются на мышцы тазового пояса и свободную часть.

Строение скелетной мышцы

В своей структуре она имеет огромное количество продолговатой формы диаметром от 10 до 100 мкм, длина их колеблется от 1 до 12 см. Волокна (микрофибриллы) бывают тонкими - актиновые, и толстыми - миозиновые.

Первые состоят из белка, имеющего фибриллярную структуру. Он называется актин. Толстые волокна состоят из различных типов миозина. Отличаются они по времени, которое требуется на разложение молекулы АТФ, что обуславливает разную скорость сокращений.

Миозин в гладких мышечных клетках находится в дисперсном состоянии, хотя имеется большое количество белка, который, в свою очередь, является многозначащим в продолжительном тоническом сокращении.

Строение скелетной мышцы похоже на сплетенный из волокон канат или многожильный провод. Сверху ее окружает тонкий чехол из соединительной ткани, называемый эпимизиум. От его внутренней поверхности вглубь мышцы отходят более тонкие разветвления соединительной ткани, создающие перегородки. В них «завернуты» отдельные пучки мышечной ткани, которые содержат до 100 фибрилл в каждом. От них еще глубже отходят более узкие ответвления.

Сквозь все слои в скелетные мышцы проникают кровеносная и нервная системы. Артериальная вена проходит вдоль перимизиума - это соединительная ткань, покрывающая пучки мышечных волокон. Артериальные и венозные капилляры располагаются рядом.

Процесс развития

Скелетные мышцы развиваются из мезодермы. Со стороны нервного желобка образуются сомиты. По истечении времени в них выделяются миотомы. Их клетки, приобретая форму веретена, эволюционируют в миобласты, которые делятся. Некоторые из них прогрессируют, а другие остаются без изменений и образуют миосателлитоциты.

Незначительная часть миобластов, благодаря соприкосновению полюсов, создает контакт между собой, далее в контактной зоне плазмалеммы распадаются. Благодаря слиянию клеток создаются симпласты. К ним переселяются недифференцированные молодые мышечные клетки, находящиеся в одном окружении с миосимпластом базальной мембраны.

Функции скелетных мышц

Эта мускулатура является основой опорно-двигательного аппарата. Если она сильна, тело проще поддерживать в нужном положении, а вероятность появления сутулости или сколиоза сводится к минимуму. О плюсах занятий спортом знают все, поэтому рассмотрим роль, которую играет в этом мускулатура.

Сократительная ткань скелетных мышц выполняет в организме человека множество различных функций, которые нужны для правильного расположения тела и взаимодействия его отдельных частей друг с другом.

Мышцы выполняют следующие функции:

  • создают подвижность тела;
  • берегут тепловую энергию, созданную внутри тела;
  • способствуют перемещению и вертикальному удержанию в пространстве;
  • содействуют сокращению дыхательных путей и помогают при глотании;
  • формируют мимику;
  • способствуют выработке тепла.

Постоянная поддержка

Когда мышечная ткань находится в покое, в ней всегда остается незначительное напряжение, называемое мышечным тонусом. Оно образуется из-за незначительных импульсных частот, которые поступают в мышцы из спинного мозга. Их действие обуславливается сигналами, проникающими из головы к спинным мотонейронам. Тонус мышц также зависит от их общего состояния:

  • растяжения;
  • уровня наполняемости мышечных футляров;
  • обогащения кровью;
  • общего водного и солевого баланса.

Человек обладает способностью регулировать уровень нагрузки мышц. В результате длительных физических упражнений либо сильного эмоционального и нервного перенапряжения тонус мышц непроизвольно увеличивается.

Сокращения скелетных мышц и их разновидности

Эта функция является основной. Но даже она, при кажущейся простоте, может делиться на несколько видов.

Виды сократительных мышц:

  • изотонические - способность мышечной ткани укорачиваться без изменений мышечных волокон;
  • изометрические - при реакции волокно сокращается, но его длина остается прежней;
  • ауксотонические - процесс сокращения мышечной ткани, где длина и напряжение мышц подвергнута изменениям.

Рассмотрим этот процесс более подробно

Сначала мозг посылает через систему нейронов импульс, которых доходит до мотонейрона, примыкающего к мышечному пучку. Далее эфферентный нейрон иннервируется из синоптического пузырька, и выделяется нейромедиатор. Он соединяется с рецепторами на сарколемме мышечного волокна и открывает натриевый канал, который приводит к деполяризации мембраны, вызывающей При достаточном количестве нейромедиатор стимулирует выработку ионов кальция. Затем он соединяется с тропонином и стимулирует его сокращение. Тот, в свою очередь, оттягивает тропомеазин, позволяя актину соединиться с миозином.

Дальше начинается процесс скольжения актинового филамента относительно миозинового, вследствие чего происходит сокращение скелетных мышц. Разобраться в процессе сжатия поперечно-полосатых мышечных пучков поможет схематическое изображение.

Принцип работы скелетных мышц

Взаимодействие большого количества мышечных пучков способствует различным движениям туловища.

Работа скелетных мышц может происходить такими способами:

  • мышцы-синергисты работают в одном направлении;
  • мышцы-антагонисты способствуют выполнению противоположных движений для осуществления напряжения.

Антагонистическое действие мышц является одним из главных факторов в деятельности опорно-двигательного аппарата. При осуществлении какого-либо действия в работу включаются не только мышечные волокна, которые совершают его, но и их антагонисты. Они способствуют противодействию и придают движению конкретность и грациозность.

Поперечно-полосатая скелетная мышца при воздействии на сустав совершает сложную работу. Ее характер определяется расположением оси сустава и относительным положением мышцы.

Некоторые функции скелетных мышц являются недостаточно освещенными, и зачастую о них не говорят. Например, некоторые из пучков выступают рычагом для работы костей скелета.

Работа мышц на клеточном уровне

Действие скелетной мускулатуры осуществляется за счет двух белков: актина и миозина. Эти составляющие обладают способностью передвигаться относительно друг друга.

Для осуществления работоспособности мышечной ткани необходим расход энергии, заключенной в химических связях органических соединений. Распад и окисление таких веществ происходят в мышцах. Здесь обязательно присутствует воздух, и выделяется энергия, 33% из всего этого расходуется на работоспособность мышечной ткани, а 67% передается другим тканям и тратится на поддержание постоянной температуры тела.

Болезни мускулатуры скелета

В большинстве случаев отклонения от нормы при функционировании мышц обусловлены патологическим состоянием ответственных отделов нервной системы.

Наиболее распространенные патологии скелетных мышц:

  • Мышечные судороги - нарушение электролитного баланса во внеклеточной жидкости, окружающей мышечные и нервные волокна, а также изменения осмотического давления в ней, особенно его повышение.
  • Гипокальциемическая тетания - непроизвольные тетанические сокращения скелетных мышц, наблюдаемые при падении внеклеточной концентрации Са2+ примерно до 40% от нормального уровня.
  • характеризуется прогрессирующей дегенерацией волокон скелетных мышц и миокарда, а также мышечной нетрудоспособностью, которая может привести к летальному исходу из-за дыхательной либо сердечной недостаточности.
  • Миастения - хроническое аутоиммунное заболевание, при котором в организме образуются антитела к никотиновому ACh-рецептору.

Релаксация и восстановление скелетных мышц

Правильное питание, образ жизни и регулярные тренировки помогут вам стать обладателем здоровых и красивых скелетных мышц. Необязательно заниматься и наращивать мышечную массу. Достаточно регулярных кардиотренировок и занятий йогой.

Не стоит забывать про обязательный прием необходимых витаминов и минералов, а также регулярные посещения саун и бань с вениками, которые позволяют обогатить кислородом мышечную ткань и кровеносные сосуды.

Систематические расслабляющие массажи повысят эластичность и репродуктивность мышечных пучков. Также положительное воздействие на структуру и функционирование скелетных мышц оказывает посещение криосауны.

Скелетная мышечная ткань

Схема скелетной мышцы в разрезе.

Строение скелетной мышцы

Скелетная (поперечно-полосатая) мышечная ткань - упругая, эластичная ткань , способная сокращаться под влиянием нервных импульсов : один из типов мышечной ткани . Образует скелетную мускулатуру человека и животных, предназначенную для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания. Мышцы состоят на 70-75 % из воды.

Гистогенез

Источником развития скелетной мускулатуры являются клетки миотомов - миобласты. Часть из них дифференцируется в местах образования так называемых аутохтонных мышц. Прочие же мигрируют из миотомов в мезенхиму ; при этом они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела. В ходе дифференцировки возникает 2 клеточные линии. Клетки первой сливаются, образуя симпласты - мышечные трубки (миотубы). Клетки второй группы остаются самостоятельными и дифференцируются в миосателлиты (миосателлитоциты).

В первой группе происходит дифференцировка специфических органелл миофибрилл , постепенно они занимают большую часть просвета миотубы, оттесняя ядра клеток к периферии.

Клетки второй группы остаются самостоятельными и располагаются на поверхности мышечных трубок.

Строение

Структурной единицей мышечной ткани является мышечное волокно. Оно состоит из миосимпласта и миосателлитоцитов (клеток-спутниц), покрытых общей базальной мембраной .

Длина мышечного волокна может достигать нескольких сантиметров при толщине в 50-100 микрометров.

Строение миосимпласта

Строение миосателлитов

Миосателлиты - одноядерные клетки, прилежащие к поверхности миосимпласта. Эти клетки отличаются низкой дифференцировкой и служат взрослыми стволовыми клетками мышечной ткани. В случае повреждения волокна или длительном увеличении нагрузки клетки начинают делиться, обеспечивая рост миосимпласта.

Механизм действия

Функциональной единицей скелетной мышцы является моторная единица (МЕ). МЕ включает в себя группу мышечных волокон и иннервирующий их мотонейрон . Число мышечных волокон, входящих в состав одной МЕ, варьирует в разных мышцах. Например, там, где требуется тонкий контроль движений (в пальцах или в мышцах глаза), Моторные единицы небольшие, они содержат не более 30 волокон. А в икроножной мышце, где тонкий контроль не нужен, в МЕ насчитывается более 1000 мышечных волокон.

Моторные единицы одной мышцы могут быть разными. В зависимости от скорости сокращения моторные единицы разделяют на медленные (slow (S-МЕ)) и быстрые (fast (F-МЕ)). А F-МЕ в свою очередь делят по устойчивости к утомлению на устойчивые к утомлению (fast-fatigue-resistant (FR-МЕ)) и быстроутомляемые (fast-fatigable (FF-МЕ)).

Соответствующим образом подразделяют иннервирующие данные МЕ мотонейроны. Существуют S-мотонейроны (S-МН), FF-мотонейроны (F-МН) и FR -мотонейроны (FR-МН) S-МЕ характеризуются высоким содержанием белка миоглобина, который способен связывать кислород (О2). Мышцы, преимущественно состоящие из МЕ этого типа, за их темно-красный цвет называются красными. Красные мышцы выполняют функцию поддержания позы человека. Предельное утомление таких мышц наступает очень медленно, а восстановление функций происходит наоборот, очень быстро.

Такая способность обуславливается наличием миоглобина и большого числа митохондрий . МЕ красных мышц, как правило, содержат большое количество мышечных волокон. FR-МЕ составляют мышцы, способные выполнять быстрые сокращения без заметного утомления. Волокна FR-ME содержат большое количество митохондрий и способны образовывать АТФ путем окислительного фосфорилирования.

Как правило, число волокон в FR-ME меньше, чем в S-ME. Волокна FF-ME характеризуются меньшим содержанием митохондрий, чем в FR-ME, а также тем, что АТФ в них образуется за счет гликолиза . В них отсутствует миоглобин , поэтому мышцы, состоящие из МЕ этого типа, называют белыми. Белые мышцы развивают сильное и быстрое сокращение, но довольно быстро утомляются.

Функция

Данный вид мышечной ткани обеспечивает возможность выполнения произвольных движений. Сокращающаяся мышца воздействует на кости или кожу, к которым она прикрепляется. При этом один из пунктов прикрепления остаётся неподвижным - так называемая точка фиксации (лат. púnctum fíxsum ), которая в большинстве случаев рассматривается в качестве начального участка мышцы. Перемещающийся фрагмент мышцы называют подвижной точкой , (лат. púnctum móbile ), которая является местом её прикрепления. Тем не менее, в зависимости от выполняемой функции, punctum fixum может выступать в качестве punctum mobile , и наоборот.

Примечания

См. также

Литература

  • Ю.И. Афанасьев, Н.А. Юрина, Е.Ф. Котовский Гистология. - 5-е изд., перераб. и доп.. - Москва: Медицина, 2002. - 744 с. - ISBN 5-225-04523-5

Ссылки

  • - Механизмы развития мышечной ткани (англ.)

Wikimedia Foundation . 2010 .

Знание основ анатомии, строения собственного тела вместе с пониманием смысла и структуры тренировок позволяет повысить результативность занятий спортом во много раз - ведь любое движение, любое спортивное усилие совершается при помощи мышц. Кроме того, мышечная ткань является значительной частью массы тела - у мужчин на её долю приходится 42-47% от сухой массы тела, у женщин - 30-35%, при чём физические нагрузки, в особенности спланированные силовые тренировки увеличивают удельный вес мышечной ткани, а физическое бездействие - напротив, его уменьшает.

Виды мышц

В организме человека имеется три вида мышц:

  • скелетные (их ещё называют поперечно-полосатыми);
  • гладкие;
  • и миокард, или сердечная мышца.

Гладкие мышцы формируют стенки внутренних органов и кровеносных сосудов. Их отличительной особенностью является то, что они работают независимо от сознания человека: усилием воли невозможно остановить, например, перистальтику (римичные сокращения) кишечника. Движения таких мышц медленные и однообраные, зато они непрерывно, без отдыха, работают всю жизнь.

Скелетная мускулатура ответственна за поддержание тела в равновесии и выполнение разнообразных движений. Вам кажется, что вы «просто» сидите в кресле и отдыхаете? На самом деле в это время десятки ваших скелетных мышц работают. Работой скелетной мускулатуры можно управлять усилием воли. Поперечно-полосатые мышцы способны быстро сокращаться и столь же быстро расслабляться, однако интенсивная деятельность сравнительно быстро приводит к их утомлению.

Сердечная мышца уникальным образом сочетает в себе качества скелетной и гладкой мускулатуры. Так же как и скелетные мышцы, миокард способен иненсивно работать и быстро сокращаться. Так же как и гладкие мышцы, он практически неутомим и не зависит от волевого усилия человека.

Кстати, силовые тренировки не только «лепят рельеф» и увеличивают силу наших скелетных мышц - они также косвенно улучшают и качество работы гладкой мускулатуры и сердечной мышцы. Кстати, это привордит и к эффекту «обратной связи» — укреплённая, развитая путём тренировок выносливости сердечная мышца работает интенсивнее и эффективнее, что выражается в улучшении кровоснабжения всего организма, в том числе и скелетных мышц, колторые благодаря этому могут переносить ещё большие нагрузки. Тренированные, развитые скелетные мышцы формируют мощный «корсет», поддерживающий внутренние органы, что играет не последнюю роль в нормализации процессов пищеварения. Нормальное пищеварение в свою очередь означает нормальное питание всех органов тела, и мышц в частности.

Различные типы мышц отличаются по своему строению, мы же рассмотрим подробнее строение скелетной мышцы, как связанной непосредственно с процессом силовой тренировки.

Заострим внимание на скелетных мышцах

Основной структурной составляющей мышечной ткани является миоцит - мышечная клетка. Одной из отличительных черт миоцита является то, что его длина в сотни раз превосходит его поперечное сечение, поэтому миоцит называют также мышечным волокном. От 10 до 50 миоцитов соединяются в пучок, а из пучков формируется собственно мышца - в бицепсе, например, до миллиона мышечных волокон.

Между пучками мышечных клеток проходят мельчайшие кровеносные сосуды - капилляры, и нервные волокна. Пучки мышечных волокон и сами мышцы покрыты плотными оболочками из соединительной ткани, которые на концах своих переходят в сухожилия, прикрепляющиеся к костям.

Основное вещество мышечной клетки называется саркоплазмой. В неё погружены тончайшие мышечные нити - миофибриллы, которые и являются сократительными элементами мышечной клетки. Каждая миофибрилла состоят из тысяч элементарных частиц - саркомеров, основной особенностью которых является способность сокращаться под воздействием нервного импульса.

В ходе целенаправленных силовых тренировок увеличивается как количество миофибрилл мышечного волокна, так и их поперечное сечение. Сначала этот процесс приводит к увеличению силы мышцы,затем - и к увеличению её толщины. Однако количество самих мышечных волокон остаётся прежним - оно обусловлено генетическими особенностями развития организма и в течении жизни не меняется. Отсюда можно сделать вывод и о различных физических перспективах спортсменов - те из них, чьи мышцы состоят из большего количества волокон, имеют больше шансов увеличить толщину мышц за счёт силовых тренировок, чем те спортсмены, чьи мышцы содержат меньше волокон.

Итак, сила скелетной мышцы зависит от её поперечного сечения - то есть от толщины и количества миофибрилл, формирующих мышечное волокно. Однако возрастают показатели силы и мышечной массы не одинаково: при увеличении мышечной массы в два раза, сила мышц становится в три раза большей, и единого объяснения этого феномена у учёных пока что нет.

Типы волокон скелетной мышцы

Волокна, формирующие скелетные мушцы, делятся на две группы: «медленные», или ST-волокна (slow twitch fibers) и «быстрые», FT-волокна (fast twitch fibers). ST-волокна содржат большое количество белка миоглобина, имеющего красный цвет, поэтому их ещё называют красными волокнами. Это - выносливые волокна, но работают они при нагрузке в пределах 20-25% от максимальной силы мышц. В свою очередь, FT-волокна содержат мало миоглобина, поэому их называют ещё «белыми» волокнами. Они сокращаются в два раза быстрее «красных» волокон и способны развить в 10 раз большую силу.

При нагрузках менее 25% от максимальной мышечной силы сначала работают ST-волокна, а потом, когда наступит их истощение - в работу включаются FT-волокна. Когда и они израсходуют энергетический ресурс, наступит их истощение и мышце потребуется отдых. Если же нагрузка изначально велика - одновременно работают оба вида волокон.

Однако не стоит ошибочно ассоциировать типы волокон со скоростью движений, которые выполняет человек. То, какой тип волокон преимущественно задействован в работа в данный момент, зависит не от скорости выполняемого движения, а от усилия, которое необходимо затратить на данное действие. С этим связано и то обстоятельство, что разные типы мышц, выполняющие различные функции, имеют пазное соотношение ST- и FT-волокон. В частности, бицепс - мышца, выполняющая преимущественно динамическую работу, содержит больше FT-волокон, чем ST. Напротив, камбаловидная мышца, испытывающая в основном статические нагрузки, состоит главным образом из ST-волокон.

Кстати, как и общее количество мышечных волокон, соотношение ST/FT волокон в мышцах конкретного человека является генетически обусловленным и сохраняется постоянным на протяжении всей жизни. Это также объясняет врождённые способности к определённым видам спорта: у самых «талантливых», выдающихся бегунов-спринтеров икроножные мышцы на 90% состоят из «быстрых» волокон, а у марафонцев - напротив, до 90% этих волокон - медленные.

Впрочем, несмотря на то, что природное количество мышечных волокон, а также соотношение их быстрой и медленной разновидностей изменить невозможно, грамотно спланированные и настойчивые тренировки заставят мышцы приспособляться к нагрузкам и непременно принесут результат.