Делит все клетки (или живые организмы ) на два типа: прокариоты и эукариоты . Прокариоты - это безъядерные клетки или организмы, к которым относятся вирусы, прокариот-бактерии и сине-зеленые водоросли, у которых клетка состоит непосредственно из цитоплазмы, в которой расположена одна хромосома - молекула ДНК (иногда РНК).

Эукариотические клетки имеют ядро , в котором находятся нуклеопротеиды (белок гистон + комплекс ДНК), а также другие органоиды . К эукариотам относятся большинство современных известных науке одноклеточных и многоклеточных живых организмов (в том числе, и растений).

Строение ограноидов эукариотов.

Название органоида

Строение органоида

Функции органоида

Цитоплазма

Внутренняя среда клетки, в которой находится ядро и другие органоиды. Имеет полужидкую, мелкозернистую структуру.

  1. Выполняет транспортную функцию.
  2. Регулирует скорость протекания обменных биохимических процессов.
  3. Обеспечивает взаимодействие органоидов.

Рибосомы

Мелкие органоиды сферической или эллипсоидной формы диаметром от 15 до 30 нанометров.

Обеспечивают процесс синтеза молекул белка, их сборку из аминокислот.

Митохондрии

Органоиды, имеющие самую разнообразную форму - от сферической до нитевидной. Внутри митохондрий имеются складки от 0,2 до 0,7 мкм. Внешняя оболочка митохондрий имеет двухмембранную структуру. Наружная мембрана гладкая, а на внутренней имеются выросты крестообразной формы с дыхательными ферментами.

  1. Ферменты на мембранах обеспечивают синтез АТФ (аденозинтрифосфорной кислоты).
  2. Энергетическая функция. Митохондрии обеспечивают поставки энергии в клетку за счет высвобождения ее при распаде АТФ.

Эндоплазматическая сеть (ЭПС)

Система оболочек в цитоплазме, которая образует каналы и полости. Бывает двух типов: гранулированная, на которой имеются рибосомы и гладкая.

  1. Обеспечивает процессы по синтезу питательных веществ (белков, жиров, углеводов).
  2. На гранулированной ЭПС синтезируются белки, на гладкой - жиры и углеводы.
  3. Обеспечивает циркуляцию и доставку питательных веществ внутри клетки.

Пластиды (органоиды, свойственные только растительным клеткам) бывают трех видов:

Двухмембранные органоиды

Лейкопласты

Бесцветные пластиды, которые содержатся в клубнях, корнях и луковицах растений.

Являются дополнительным резервуаром для хранения питательных веществ.

Хлоропласты

Органоиды овальной формы, имеющие зеленый цвет. От цитоплазмы отделяются двумя трехслойными мембранами. Внутри хлоропластов находится хлорофилл.

Преобразуют органические вещества из неорганических, используя энергию солнца.

Хромопласты

Органоиды, от желтого до бурого цвета, в которых накапливается каротин.

Способствуют появлению у растений частей с желтой, оранжевой и красной окраской.

Лизосомы

Органоиды округлой формы диаметром около 1 мкм, имеющие на поверхности мембрану, а внутри - комплекс ферментов.

Пищеварительная функция. Переваривают питательные частицы и ликвидируют отмершие части клетки.

Комплекс Гольджи

Может быть разной формы. Состоит из полостей, разграниченных мембранами. Из полостей отходят трубчатые образования с пузырьками на концах.

  1. Образует лизосомы.
  2. Собирает и выводит синтезируемые в ЭПС органические вещества.

Клеточный центр

Состоит из центросферы (уплотненного участка цитоплазмы) и центриолей - двух маленьких телец.

Выполняет важную функцию для деления клетки.

Клеточные включения

Углеводы, жиры и белки, которые являются непостоянными компонентами клетки.

Запасные питательные вещества, которые используются для жизнедеятельности клетки.

Органоиды движения

Жгутики и реснички (выросты и клетки), миофибриллы (нитевидные образования) и псевдоподии (или ложноножки).

Выполняют двигательную функцию, а также обеспечивают процесс сокращения мышц.

Ядро клетки является главным и самым сложным органоидом клетки, поэтому его мы рассмотрим

Органоиды клетки — стойкие клеточные органы, структуры, которые обеспечивают осуществление ряда функций в процессе жизнедеятельности клетки: сохранение и передачу генетической информации, движение, деление, перенос веществ, синтез и другие.

К органеллам клеток эукариот входят:

  • хромосомы;
  • рибосомы;
  • митохондрии;
  • клеточная мембрана;
  • микрофиламенты;
  • микротрубочки;
  • комплекс Гольджи;
  • эндоплазматическая сеть;
  • лизосомы.

Также обычно ядро относят к органоидам клеток эукариот. Основная особенность растительной клетки — это наличие пластид.

Строение растительной клетки:

Как правило, растительная клетка включает:

  • мембрана;
  • цитоплазма с органоидами;
  • целлюлозная оболочка;
  • вакуоли с клеточным соком;
  • ядро.

Строение животной клетки:

Строение животной клетки состоит из:

  • цитоплазма с органоидами;
  • ядро с хромосомами;
  • наличие наружной мембраны.

Какую функцию выполняют клеточные органоиды — таблица

Название органоида Строение органоида Функции органоида
Эндоплазматическая сеть (ЭПС) Система плоские слоев, которая создает полости и каналы. Существует два типа: гладкая и гранулированная (есть рибосомы).

1. Разделяет цитоплазму клетки на изолированные пространства, с целью отсоединить большинство параллельно идущих реакций.

2. На гладкой ЭПС синтезируются углеводы и жиры, а на гранулированной — белки.

3. Нужна для доставки и циркуляции питательных веществ внутри клетки.

Митохондрии

Размеры составляют от 1 до 7 мкм. Число митохондрий может равняться до десятков тысяч в клетке. Внешняя оболочка митохондрий наделена двухмембранной структурой. Наружная мембрана гладкая. Внутренняя состоит из выростов крестообразной формы с дыхательными ферментами.

1. Обеспечивают синтез АТФ.

2. Энергетическая функция.

Клеточная мембрана Имеет трехслойную структуру. Содержит липиды трех классов: фосфолипиды, гликолипиды, холестерол.

1. Поддержание структуры мембран.

2. Перемещение различных молекул.

3. Выборочная проницаемость.

4. Получение и изменение сигналов из окружающей среды.

Ядро Самая большая органелла, которая помещена в оболочку из двух мембран. Имеет хроматин, а также содержит структуру «ядрышко».

1. Хранение генетической информации, а также передача её дочерним клеткам в процессе деления.

2. Хромосомы содержат ДНК.

3. В ядрышке формируются рибосомы.

4. Контроль жизнедеятельности клетки.

Рибосомы Мелкие органоиды, которые имеют сферическую или эллипсоидную форму. Диаметр обычно составляет 15-30 нанометров. 1. Обеспечивают синтез белка.
Цитоплазма

Внутренняя среда клетки, которая содержит ядро и прочие органоиды. Структура — мелкозернистая, полужидкая.

1. Транспортная функция.

2. Нужна для взаимодействия органоидов.

2. Регулирует скорость протекания обменных биохимических процессов.

Лизосомы Обычный сферический мембранный мешочек, который заполненный пищеварительными ферментами.

1. Различные функции, которые связаны с распадом молекул или структур.

Клеточные органеллы — видео

Органоиды - это постоянные компоненты клетки, выполняющие определенные функции.

В зависимости от особенностей строения их делят на мембранные и немембранные. Мембран­ные органоиды, в свою очередь, относят к одномембранным (эндоплазматическая сеть, комплекс Гольджи и лизосомы) или двумембранным (митохондрии, пластиды и ядро). Немембранными органоидами являются рибосомы, микротрубочки, микрофиламенты и клеточный центр. Прока­риотам из перечисленных органоидов присущи только рибосомы.

Строение и функции ядра. Ядро - крупный двумембранный органоид, лежащий в центре клетки или на ее периферии. Размеры ядра могут колебаться в пределах 3-35 мкм. Форма ядра чаще сферическая или эллипсоидная, однако имеются также палочковидные, веретеновидные, бобовидные, лопастные и даже сегментированные ядра. Некоторые исследователи считают, что форма ядра соответствует форме самой клетки.

Большинство клеток имеет одно ядро, но, например, в клетках печени и сердца Их может быть два, а в ряде нейронов - до 15. Волокна скелетных мышц содержат обычно много ядер, однако они не являются клетками в полном смысле этого слова, поскольку образуются в результате сли­яния нескольких клеток.

Ядро окружено ядерной оболочкой, а его внутреннее пространство заполнено ядерным соком, или нуклеоплазмой (кариоплазмой ), в которую погружены хроматин и ядрышко. Ядро выполня­ет такие важнейшие функции, как хранение и передача наследственной информации, а также контроль жизнедеятельности клетки (рис. 2.30).

Роль ядра в передаче наследственной информации была убедительно доказана в экспериментах с зеленой водорослью ацетабулярией. В единственной гигантской клетке, достигающей в длину 5 см, различают шляпку, ножку и ризоид. При этом она содержит только одно ядро, расположен­ное в ризоиде. В 1930-е годы И. Хеммерлинг пересадил ядро одного вида ацетабулярии с зеленой окраской в ризоид другого вида, с коричневой окраской, у которого ядро было удалено (рис. 2.31). Через некоторое время у растения с пересаженным ядром выросла новая шляпка, как у водорос- ли-донора ядра. В то же время отделенные от ризоида шляпка или ножка, не содержащие ядра, через некоторое время погибали.

Ядерная оболочка образована двумя мембранами - наружной и внутренней, между которыми есть пространство. Межмембранное пространство сообщается с полостью шероховатой эндоплаз- матической сети, а наружная мембрана ядра может нести рибосомы. Ядерная оболочка прониза­на многочисленными порами, окантованными специальными белками. Через поры происходит транспорт веществ: в ядро попадают необходимые белки (в т. ч. ферменты), ионы, нуклеотиды и другие вещества, и покидают его молекулы РНК, отработанные белки, субъединицы рибосом.

Таким образом, функциями ядерной оболочки являются отделение содержимого ядра от цитоплазмы, а также регуляция обмена веществ между ядром и цитоплазмой.

Нуклеоплазмой называют содержимое ядра, в которое погружены хроматин и ядрышко. Она представляет собой коллоидный раствор, по химическому составу напоминающий цитоплазму. Ферменты нуклеоплазмы катализируют обмен аминокислот, нуклеотидов, белков и др. Нуклео-плазма связана с гиалоплазмой через ядерные поры. Функции нуклеоплазмы, как и гиалоплаз-мы, состоят в обеспечении взаимосвязи всех структурных компонентов ядра и осуществлении ряда ферментных реакций.

Хроматином называют совокупность тонких нитей и гранул, погруженных в нуклеоплазму. Выявить его можно только при окрашивании, так как коэффициенты преломления хроматина и нуклеоплазмы приблизительно одинаковы. Нитчатый компонент хроматина называют эухро-матином, а гранулярный - гетерохроматином. Эухроматин слабо уплотнен, поскольку с него считывается наследственная информация, тогда как более спирализованный гетерохроматин является генетически неактивным.

Хроматин представляет собой структурное видоизменение хромосом в неделящемся ядре. Таким образом, хромосомы постоянно присутствуют в ядре, изменяется лишь их состояние в зависимости от функции, которую ядро выполняет в данный момент.

В состав хроматина в основном входят белки-нуклеопротеины (дезоксирибонуклеопротеины и рибонуклеопротеины), а также ферменты, важнейшие из которых связаны с синтезом нуклеиновых кислот, и некоторые другие вещества.

Функции хроматина состоят, во-первых, в синтезе специфических для данного организма нуклеиновых кислот, которые направляют синтез специфических белков, во-вторых, в передаче наследственных свойств от материнской клетки дочерним, для чего хроматиновые нити в процессе деления упаковываются в хромосомы.

Ядрышко - сферическое, хорошо заметное под микроскопом тельце диаметром 1-3 мкм. Оно формируется на участках хроматина, в которых закодирована информация о структуре рРНК и белках рибосом. Ядрышко в ядре часто одно, однако в тех клетках, где происходят интенсивные процессы жизнедеятельности, ядрышек может быть два и более. Функции ядрышек - синтез рРНК и сборка субъединиц рибосом путем объединения рРНК с белками, поступающими из цитоплазмы.

Митохондрии - двумембранные органоиды округлой, овальной или палочковидной формы, хотя встречаются и спиралевидные (в сперматозоидах). Диаметр митохондрий составляет до 1 мкм, а длина - до 7 мкм. Пространство внутри митохондрий заполнено матриксом. Матрикс - это основное вещество митохондрий. В него погружены кольцевая молекула ДНК и рибосомы. Наружная мембрана митохондрий гладкая, она непроницаема для многих веществ. Внутренняя мембрана имеет выросты - кристы, увеличивающие площадь поверхности мембран для протекания химических реакций (рис. 2.32). На поверхности мембраны расположены многочисленные белковые комплексы, составляющие так называемую дыхательную цепь, а также грибовидные ферменты АТФ-синтетазы. В митохондриях протекает аэробный этап дыхания, в ходе которого происходит синтез АТФ.

Пластиды - крупные двумембранные органоиды, характерные только для растительных клеток. Внутреннее пространство пластид заполнено стромой, или матриксом. В строме находится более или менее развитая система мембранных пузырьков - тилакоидов, которые собраны в стопки - граны, а также собственная кольцевая молекула ДНК и рибосомы. Различают четыре основных типа пластид: хлоропласты, хромопласты, лейкопласты и пропластиды.

Хлоропласты - это зеленые пластиды диаметром 3-10 мкм, хорошо различимые под микроскопом (рис. 2.33). Они содержатся только в зеленых частях растений - листьях, молодых стеблях, цветках и плодах. Хлоропласты в основном имеют овальную или эллипсоидную формы, но могут быть также чашевидными, спиралевидными и даже лопастными. Количество хлоропластов в клетке в среднем составляет от 10 до 100 штук.

Однако, например, у некоторых водорослей он может быть один, иметь значительные размеры и сложную форму - тогда его называют хрома- тофором. В других случаях количество хлоропластов может достигать нескольких сотен, при этом их размеры невелики. Окраска хлоропластов обусловлена основным пигментом фотосинте­за - хлорофиллом, хотя в них содержатся и дополнительные пигменты - каротиноиды. Кароти- ноиды становятся заметными только осенью, когда хлорофилл в ста­реющих листьях разрушается. Основной функцией хлоропластов является фотосинтез. Световые реакции фотосинтеза протекают на мембранах тилакоидов, на которых закреплены молекулы хлорофил­ла, а темновые реакции - в строме, где содержатся многочисленные ферменты.

Хромопласты. - это желтые, оранжевые и красные пластиды, содержащие пигменты каротиноиды. Форма хромопластов может также существенно варьировать: они бывают трубчатыми, сфериче­скими, кристаллическими и др. Хромопласты придают окраску цвет­кам и плодам растений, привлекая опылителей и распространителей семян и плодов.

Лейкопласты - это белые или бесцветные пластиды в основном округлой или овальной фор­мы. Они распространены в нефотосинтезирующих частях растений, например в кожице листа, клубнях картофеля и т. д. В них откладываются в запас питательные вещества, чаще всего крах­мал, но у некоторых растений это могут быть белки или масло.

Пластиды образуются в растительных клетках из пропластид, которые имеются уже в клетках образовательной ткани и представляют собой небольшие двумембранные тельца. На ранних эта­пах развития разные виды пластид способны превращаться друг в друга: при попадании на свет лейкопласты клубня картофеля и хромопласты корнеплода моркови зеленеют.

Пластиды и митохондрии называют полуавтономными органоидами клетки, так как они име­ют собственные молекулы ДНК и рибосомы, осуществляют синтез белка и делятся независимо от деления клеток. Эти особенности объясняются происхождением от одноклеточных прокариотических организмов. Однако «самостоя­тельность» митохондрий и пластид является ограниченной, так как их ДНК содержит слишком мало генов для свободного существова­ния, остальная же информация закодирована в хромосомах ядра, что позволяет ему контролировать данные органоиды.

Эндоплазматическая сеть (ЭПС), или эндоплазматический ре тикулум (ЭР) - это одномембранный органоид, представляющий собой сеть мембранных полостей и канальцев, занимающих до 30% содержимого цитоплазмы. Диаметр канальцев ЭПС составляет около 25-30 нм. Различают два вида ЭПС - шероховатую и гладкую. Ше­роховатая ЭПС несет рибосомы, на ней происходит синтез белков (рис. 2.34).

Гладкая ЭПС лишена рибосом. Ее функция - синтез липидов и углеводов, образование лизосом, а также транспорт, за­пасание и обезвреживание токсических веществ. Она особенно раз­вита в тех клетках, где происходят интенсивные процессы обмена веществ, например в клетках печени - гепатоцитах - и волокнах скелетных мышц. Вещества, синтезированные в ЭПС, транспортиру­ются в аппарат Гольджи. В ЭПС происходит также сборка мембран клетки, однако их формирование завершается в аппарате Гольджи.

Аппарат Гольджи, или комплекс Гольджи - одномембранный органоид, образованный системой плоских цистерн, канальцев и от- шнуровывающихся от них пузырьков (рис. 2.35).

Структурной еди­ницей аппарата Гольджи является диктиосома - стопка цистерн, наодин полюс которой приходят вещества из ЭПС, а с противоположного полюса, подвергшись опре­деленным превращениям, они упаковываются в пузырьки и направляются в другие части клетки. Диаметр цистерн - порядка 2 мкм, а мелких пузырьков - около 20-30 мкм. Основные функции комплекса Гольджи - синтез некоторых веществ и модификация (изменение) белков, липидов и углеводов, поступающих из ЭПС, окончательное формирование мембран, а также транспорт веществ по клетке, обновление ее структур и образование лизосом. Свое название аппарат Голь­джи получил в честь итальянского ученого Камилло Гольджи, впервые обнаружившего данный органоид (1898).

Лизосомы - небольшие одномембранные органоиды до 1 мкм в диаметре, в которых содер­жатся гидролитические ферменты, участвующие во внутриклеточном пищеварении. Мембраны лизосом слабопроницаемы для этих ферментов, поэтому выполнение лизосомами своих функций происходит очень точно и адресно. Так, они принимают активное участие в процессе фагоцитоза, образуя пищеварительные вакуоли, а в случае голодания или повреждения определенных частей клетки переваривают их, не затрагивая иных. Недавно была открыта роль лизосом в процессах клеточной гибели.

Вакуоль - это полость в цитоплазме растительных и животных клеток, ограниченная мембра­ной и заполненная жидкостью. В клетках простейших обнаруживаются пищеварительные и со­кратительные вакуоли. Первые принимают участие в процессе фагоцитоза, так как в них про­исходит расщепление питательных веществ. Вторые обеспечивают поддержание водно-солевого баланса за счет осморегуляции. У многоклеточных животных в основном встречаются пищевари­тельные вакуоли.

В растительных клетках вакуоли присутствуют всегда, они окружены специальной мембраной и заполнены клеточным соком. Мембрана, окружающая вакуоль, по химическому составу, строе­нию и выполняемым функциям близка к плазматической мембране. Клеточный сок представляет собой водный раствор различных неорганических и органических веществ, в том числе мине­ральных солей, органических кислот, углеводов, белков, гликозидов, алкалоидов и др. Вакуоль может занимать до 90 % объема клетки и оттеснять ядро на периферию. Эта часть клетки вы­полняет запасающую, выделительную, осмотическую, защитную, лизосомную и другие функции, поскольку в ней накапливаются питательные вещества и отходы жизнедеятельности, она обеспе­чивает поступление воды и поддержание формы и объема клетки, а также содержит ферменты расщепления многих компонентов клетки. К тому же биологически активные вещества вакуолей способны препятствовать поеданию этих растений многими животными. У ряда растений за счет разбухания вакуолей происходит рост клетки растяжением.

Вакуоли имеются также и в клетках некоторых грибов и бактерий, однако у грибов они вы­полняют только функцию осморегуляции, а у цианобактерий поддерживают плавучесть и уча­ствуют в процессах усвоения азота из воздуха.

Рибосомы - небольшие немембранные органоиды диаметром 15-20 мкм, состоящие из двух субъединиц - большой и малой (рис. 2.36).

Субъединицы рибосом эукариот собираются в ядрыш­ке, а затем транспортируются в цитоплазму. Рибосомы прокариот, митохондрий и пластид мень­ше по величине, чем рибосомы эукариот. В состав субъединиц рибосом входят рРНК и белки.

Количество рибосом к клетке может достигать нескольких десятков миллионов: в цитоплазме, митохондриях и пластидах они находятся в свободном состоянии, а на шероховатой ЭПС - в свя­занном. Они принимают участие в синтезе белка, в частности, осуществляют процесс трансля­ции - биосинтеза полипептидной цепи на молекуле иРНК. На свободных рибосомах синтези­руются белки гиалоплазмы, митохондрий, пластид и собственные белки рибосом, тогда как на прикрепленных к шероховатой ЭПС рибосомах осуществляется трансляция белков для выведения из клеток, сборки мембран, образования лизосом и вакуолей.

Рибосомы могут находиться в гиалоплазме поодиночке или собираться в группы при одновре­менном синтезе на одной иРНК сразу нескольких полипептидных цепей. Такие группы рибосом называются полирибосомами, или полисомами (рис. 2.37).

Микротрубочки - это цилиндрические полые немембранные органоиды, которые пронизы­вают всю цитоплазму клетки. Их диаметр составляет около 25 нм, толщина стенки - 6-8 нм. Они образованы многочисленными молекулами белка тубулина, которые сначала формируют 13 нитей, напоминающих бусы, а затем собираются в микротрубочку. Микротрубочки образуют цитоплазматическую сеть, которая придает клетке форму и объем, связывают плазматическую мембрану с другими частями клетки, обеспечивают транспорт веществ по клетке, принимают уча­стие в движении клетки и внутриклеточных компонентов, а также в делении генетического ма­териала. Они входят в состав клеточного центра и органоидов движения - жгутиков и ресничек.

Микрофиламенты, или микронити, также являются немембранными органоидами, однако они имеют нитевидную форму и образованы не тубулином, а актином. Они принимают уча­стие в процессах мембранного транспорта, межклеточном узнавании, делении цитоплазмы клетки и в ее движении. В мышечных клетках взаимодействие актиновых микрофиламентов с миозино- выми нитями обеспечивает сокращение.

Микротрубочки и микрофиламенты образуют внутренний скелет клетки - цитоскелет. Он представляет собой сложную сеть волокон, обеспечивающих механическую опору для плазмати­ческой мембраны, определяет форму клетки, расположение клеточных органоидов и их переме­щение в процессе деления клетки (рис. 2.38).

Клеточный центр - немембранный органоид, располагающийся в животных клетках вблизи ядра; в растительных клетках он отсутствует (рис. 2.39). Его длина составляет около 0,2-0,3 мкм, а диаметр - 0,1-0,15 мкм. Клеточный центр образован двумя центриолями, лежащими во вза­имно перпендикулярных плоскостях, и лучистой сферой из микротрубочек. Каждая центриоль образована девятью группами микротрубочек, собранных по три, т. е. триплетами. Клеточный центр принимает участие в процессах сборки микротрубочек, делении наследственного материала клетки, а также в образовании жгутиков и ресничек.

Органоиды движения. Жгутики и реснички представляют собой выросты клетки, покрытые плазмалеммой. Основу этих органоидов составляют девять пар микротрубочек, расположенных по периферии, и две свободные микротрубочки в центре (рис. 2.40). Микротрубочки связаны междусобой различными белками, обеспечивающими их согласованное отклонение от оси - колебание. Колебания энергозависимы, то есть на этот процесс тратится энергия макроэргических связей АТФ. Расщепление АТФ является функцией базальных телец, или кинетосом, расположенных в основании жгутиков и ресничек.

Длина ресничек составляет около 10-15 нм, а жгутиков - 20-50 мкм. За счет строго на­правленных движений жгутиков и ресничек осуществляется не только движение одноклеточных животных, сперматозоидов и др., но и происходит очистка дыхательных путей, продвижение яйцеклетки по маточным трубам, поскольку все эти части организма человека выстланы реснит­чатым эпителием.

Любой человек знает ещё со школы, что все живые организмы, как растения, так и животные, состоят из клеток. Но вот из чего состоят они сами – это известно отнюдь не каждому, а если всё-таки и известно, то не всегда хорошо. В данной статье мы рассмотрим строение растительных и животных клеток, разберёмся в их отличиях и сходствах.

Но сначала давайте разберёмся, что же вообще такое органоид.

Органоид – это орган клетки, осуществляющий какую-либо свою, индивидуальную функцию в ней, обеспечивая при этом её жизнеспособность, ведь без исключения каждый процесс, происходящий в системе, очень для этой системы важен. А все органоиды составляют систему . Органоиды ещё называют органеллами.

Растительные органеллы

Итак, рассмотрим, какие же органоиды имеются в растениях и какие именно функции они выполняют.

Ядро (ядерный аппарат) – один из самых важных органоидов. Оно отвечает за передачу наследственной информации – ДНК (дезоксирибонуклеиновую кислоту). Ядро – органелла округлой формы. У него есть подобие скелета – ядерный матрикс. Именно матрикс отвечает за морфологию ядра , его форму и размеры. Внутри ядра содержится ядерный сок, или кариоплазма. Она представляет собой достаточно вязкую, густую жидкость, в которой находятся маленькое ядрышко, формирующее белки и ДНК, а также хроматин, который реализует накопленный генетический материал.

Сам ядерный аппарат вместе с другими органоидами находится в цитоплазме – жидкой среде. Цитоплазма состоит из белков, углеводов, нуклеиновых кислот и прочих веществ, являющихся результатами производства других органоидов. Главная функция цитоплазмы – передача веществ между органоидами для поддержания жизни. Так как цитоплазма – это жидкость, то внутри клетки происходит незначительное движение органелл.

Мембранная оболочка

Мембранная оболочка, или плазмалемма, выполняет защитную функцию, оберегая органеллы от каких-либо повреждений. Мембранная оболочка представляет собой плёнку . Она не сплошная – оболочка имеет поры, через которые одни вещества входят в цитоплазму, а другие выходят. Складки и выросты мембраны обеспечивают прочное соединение клеток между собой. Защищена оболочка клеточной стенкой, это наружный скелет, придающий клетке особую форму.

Вакуоли

Вакуоли – это специальные резервуары для хранения клеточного сока. Он содержит в себе питательные вещества и продукты жизнедеятельности. Вакуоли накапливают его в процессе всей жизни клетки, подобные запасы необходимы в случае повреждений (редко) или же нехватки питательных веществ.

Аппарат, лизосомы и митохондрии

Хлоропласты, лейкопласты и хромопласты

Пластиды – двумембранные органоиды клетки , делящиеся на три вида – хлоропласты, лейкопласты и хромопласты:

  • Хлоропласты придают растениям зелёный цвет, они имеют округлую форму и содержат особое вещество – пигмент хлорофилл, участвующий в процессе фотосинтеза .
  • Лейкопласты – органеллы прозрачного цвета, отвечающие за переработку глюкозы в крахмал.
  • Хромопластами называют пластиды красного, оранжевого или жёлтого цвета. Они могут развиваться из хлоропластов, когда те теряют хлорофилл и крахмал. Мы можем наблюдать этот процесс, когда желтеют листья или созревают плоды. Хромопласты могут превратиться обратно в хлоропласты при определённых условиях.

Эндоплазматическая сеть

Эндоплазматическая сеть состоит из рибосом и полирибосом. Рибосомы синтезируются в ядрышке, они выполняют функцию биосинтеза белка. Рибосомные комплексы состоят из двух частей – большой и малой. Количество рибосом в пространстве цитоплазмы преобладающее .

Полирибосома – это множество рибосом, транслирующих одну большую молекулу вещества.

Органоиды животной клетки

Некоторые из органелл полностью совпадают с органоидами растительной, а некоторых растительных вообще нет в животных. Ниже приведена таблица сравнения особенностей строения.

Разберёмся с последними двумя:

Можно сказать, что строение животной и растительной клеток различно потому, что растения и животные имеют различные формы жизни. Так, органоиды растительной клетки лучше защищены, потому что растения недвижимы – они не могут убежать от опасности. Пластиды имеются в растительной клетке, обеспечивая растению ещё один вид питания – фотосинтез. Животным же в силу их особенностей питание посредством переработки солнечного света совершенно ни к чему. А потому и ни одного из трёх видов пластидов в животной клетке быть не может.

Все живые организмы в зависимости от типа составляющих их клеток разделяют на эукариоты (клетки, имеющие ядро) и прокариоты (клетки, у которых оформленное ядро отсутствует). Из эука-риотических клеток состоят самые разнообразные организмы; высшие растения, грибы, одноклеточные амебы и многоклеточные животные. Отдельные клетки из разных частей какого-либо высшего организма могут существенно различаться по форме, размерам и функциям. Однако, несмотря на различия, клетки как многоклеточных, так и одноклеточных организмов в принципе сходны по своему строению, а различия в деталях строения обусловлены их функциональной специализацией. Основными элементами всех клеток являются цитоплазма и ядро.

Любая клетка (рис. 1.1) содержит множество структурных единиц меньшего размера, называемых органеллами. Органеллы выполняют специфические функции, например вырабатывают энергию или участвуют в делении клетки. Органеллы окружены со всех сторон жидкой цитоплазмой, а сама клетка отграничена от окружающей среды липидно-белковой оболочкой, называемой клеточной мембраной. Через клеточную мембрану осуществляется активный и пассивный перенос различных веществ внутрь и наружу.

Цитоплазма животной клетки - сложно организованная система, представляющая собой основную массу клетки. Она состоит из коллоидного раствора белков и других органических веществ: 85 % этого раствора - вода, 10 % - белки и 5 % - другие соединения. По своей структуре цитоплазма неоднородна. В ней расположены пластинчатые структуры, или мембраны, которые образуют сложную систему разветвленных каналов. Это так называемая эндо-плазматическая сеть, или ретикулум. Различают гладкий эндоплазматический ретикулум (ГЭР) и шероховатый эндоплазматический ретикулум (ШЭР). ГЭР представляет собой систему гладких внутриклеточных мембран: в этой органелле находятся ферменты, обезвреживающие ядовитые вещества (в частности, оксидазы). На мембранах ГЭР происходят синтез липидов и гидролитическое расщепление гликогена. ШЭР представляет собой систему внутриклеточных мембран с прикрепленными к ним многочисленными рибосомами, которые и придают вид шероховатости. Часть ШЭР находится в прямом контакте с ядерной мембраной. На мембранах ШЭР синтезируются различные виды белков.

Дисковидные мембраны и связанные с ними многочисленные пузырьки представляют собой так называемый комплекс Гольджи. В нем происходит концентрация веществ, которые затем либо используются в клетке, либо секретируются во внеклеточную среду.

В рибосоме, представляющей собой сложную органеллу, осуществляется синтез белка. Рибосомы, расположенные на мембранах эндоплазматической сети (ШЭР) или свободно в цитоплазме. В их состав входят белки и рибонуклеиновые кислоты (РНК) примерно в равном количестве.

Палочковидные органеллы диаметром около 1 мкм и длиной около 7 мкм, носящие название митохондрии, имеют двойную мембрану. Пространство, ограниченное внутренней мембраной, называют митохондриальным матриксом. Он содержит рибосомы и митохондриальную кольцевую ДНК, специфические РНК, соли кальция и магния. В митохондриях за счет окислительно-восстановительных процессов вырабатывается энергия, которая накапливается в виде молекул аденозинтрифосфата (АТФ). Количество митохондрий в одной клетке может достигать нескольких тысяч. Митохондрии способны к самовоспроизведению.

Органеллы в виде пузырьков, покрытые мембраной, лизосомы, содержат ферменты, расщепляющие белки, нуклеиновые кислоты, полисахариды. Лизосомы являются «пищеварительной системой» клетки. В случае разрушения мембраны лизосомы могут переваривать и содержимое цитоплазмы клетки, происходит автолизис (самопереваривание).

Овальные тельца, ограниченные мембраной, пероксисомы, содержат ферменты окисления аминокислот и фермент каталазу, разрушающий перекись водорода (Н2О2). При метаболизме аминокислот образуется Н2О2, которая является высокотоксичным соединением. Каталаза, таким образом, выполняет защитную функцию.

В центре клетки или рядом с ядром обычно располагается «клеточный центр» - центросома. Центросома состоит из двух центриолей и центросферы - особым образом организованного участка цитоплазмы. Центросома участвует в процессе деления клетки, создавая веретено деления.

Ядро клетки является носителем генетического материала и местом, где осуществляется его воспроизведение и функционирование. Оно имеет сложное строение, изменяющееся в процессе клеточного деления. Ядро состоит из кариоплазмы, нескольких ядрышек и ядерной оболочки. В кариоплазме содержатся обязательные элементы ядра - хромосомы. ДНК хромосом в ядре обычно находятся в комплексе с белками. Такие ДНК-белковые комплексы называются хроматином (от греч. chromatos - цвет, краска) по их способности хорошо окрашиваться красителями. В интерфазных клетках хроматин распределен по всему ядру или располагается в виде отдельных глыбок. Это обусловлено тем, что во время интерфазы хромосомы деконденсированы (раскручены) и представлены очень длинными нитями, которые служат матрицами для последующего синтеза белков. Они и составляют нити хроматина, максимальная конденсация которых происходит во время митотического деления клеток с образованием хромосом.

Ядро отграничено от цитоплазмы ядерной оболочкой. Ядерная оболочка состоит из двух слоев, разделенных перинуклеарным пространством. По всей поверхности ядерной оболочки равномерно распределены ядерные поры, через которые происходит перенос веществ как из ядра, так и в обратном направлении.

Ядрышко представляет собой область внутри ядра, являющуюся производной некоторых хромосом. В ней локализованы гены, кодирующие молекулы рибосомных РНК. Плотная центральная зона ядрышка содержит ДНК-белковые комплексы, и здесь происходит транскрипция генов рибосомных РНК. Ядро может содержать от одного до нескольких ядрышек.

Рассмотренные органеллы являются обязательными элементами клетки. В некоторых случаях в цитоплазме клетки выявляются различные включения. Они не являются обязательным компонентом, поскольку представляют различные продукты метаболизма (белки, жиры, пигментные зерна, кристаллы солей мочевой кислоты и т.п.). В случае необходимости эти вещества могут быть использованы самой клеткой или организмом либо выведены из организма.

Еще по теме СТРОЕНИЕ ЖИВОТНОЙ КЛЕТКИ. ОСНОВНЫЕ ОРГАНЕЛЛЫ И ИХ ФУНКЦИИ:

  1. Видовые особенности строения и функции молочной железы самок разных видов животных. sssn Болезни и аномалии молочной железы