Санитарно-гигиенические требования и мероприятия по защите от источников ионизирующих излучения на производстве, определяются:

Активностью источников;

Их агрегатному состоянию;

Видом и энергией излучения;

Количеством вещества;

Характером технологического процесса. Для безопасности работ с источниками радиоактивных излучений

необходимую защиту как от внешнего, так и от внутреннего облучения.

Задача при обеспечении радиационной безопасности состоит в том, чтобы не допустить излучения выше предельно. Оно обеспечивается путем применения комплекса организационных и технологических мероприятий, в том числе "защиты временем" и "защиты расстоянием".

Доза гамма излучения:

где: Д - доза у-излучения, Р; и y - ионизационная стала данного изотопа, А - активность, мКи; t - время облучения, ч.; l - расстояние от источника, м.

Из формулы видно, что доза облучения тем меньше, чем меньше время излучения - "защита временем" и чем больше расстояние от источника излучения - "защита расстоянием».

"Защита время" во время работы достигается соответствующей подготовкой и организацией работ, составлением и соблюдением графиков, согласно которым при контакте с источниками излучения минимальный, а производительность труда остается достаточно высокой.

"Защита расстоянием" при работе с радиоактивными веществами незначительной активности предусматривает использование ручных манипуляционных захватов и дистанционных универсальных манипуляторов. Ручные манипуляционные захваты передают движения и усилия рук оператора на некоторое расстояние с соответствующим увеличением этих движений и усилий. Удаленные универсальные манипуляторы позволяют выполнять различные операции по захвату и перемещению предметов, ориентации их под любым углом и др. Они обладают несколькими степенями свободы, ими можно управлять с большого расстояния с помощью рукояток, при этом оператор пальцами испытывает нагрузку и силу от захватов манипулятора. Наблюдение за работой осуществляется с помощью телевизионных систем, системы зеркал и перископов.

При работе с радиоактивными веществами большой активности применяют автоматизированное оборудование, системы дистанционного управления.

Экранирование является наиболее эффективной защитой от радиоактивного облучения, так как позволяет снижать дозу облучения на рабочем месте до предельно уровня. Проектируя защитные экраны, следует определить толщину и материал экрана с учетом вида и энергии излучения.

Защитные экраны от а-излучения, как правило, не применяются, так как оно имеет малую проникающую способность. Слой воздуха в несколько сантиметров или более плотного материала в несколько миллиметров (стекло, картон, фольга, одежда, резиновые перчатки и др.) Обеспечивают достаточно полное поглощение а-излучения.

Поглощение потока β-излучения может быть определено, если толщина защитного экрана может быть примерно определена по формуле:

В защитных экранах для поглощения потока β-излучения применяют алюминий, стекло, плексиглас, свинец с облицовкой материалами с малым атомным номером. Свинец применяется при экранировании β излучений высоких энергий, так как это излучение при прохождении через вещество вызывает вторичное излучение (рентгеновское, в-излучения и нейтронов).

Экраны для защиты от у-излучения выполняют из материалов с большим атомным номером и большой плотностью (свинец, вольфрам). Для стационарных сооружений применяют бетон, баритобетон, чугун, сталь, одновременно являются элементами строительных конструкций.

Если известен уровень излучения на рабочем месте без защиты, то толщину защитных экранов от у-излучений можно определить по формуле:

Защита от нейтронов осложняется тем, что они очень плохо поглощаются веществом. В связи с этим защита от нейтронов заключается в замедлении быстрых нейтронов и последующем поглощении уже замедленных. Защитными материалами от быстрых нейтронов является вода, парафин, графит, бериллий и ин.ш.

Тепловые нейтроны хорошо поглощаются бором, кадмием.

Применяют защитные экраны различных конструкций: стационарные, передвижные, разборные, настольные.

При работе с малыми уровнями излучения используют вытяжные шкафы и боксы, отличающиеся достаточной герметичностью, оборудованные манипуляторами и приточно-вытяжной вентиляцией (7.1).

При транспортировке и хранении радиоактивных веществ используют контейнеры и сейфы, выполненные из стали, свинца, чугуна.

Для устранения попадания внутрь организма светящихся соединений (в настоящее время они применяются в исключительных случаях по шкалам приборов и ручках управления), вызывающие внутреннее облучение, необходимо соблюдать правила личной гигиены (мыть руки теплой водой с мылом перед едой, курением и др.) И исключать возможность их распыления и попадания в воздух производственных помещений.

Работы с радиоактивными изотопами, а также техническое обслуживание приборов и установок, в которых используются изотопы, должны проводиться в специально отведенных помещениях с санитарно-техническим оборудованием и системой вентиляции.

Техническое обслуживание и работа на установках с радиоактивными изотопами должна выполняться работниками не моложе 18 лет, прошедшие медицинский осмотр и специальное обучение безопасным методам работы на данной установке. Эти работники должны находиться под постоянным контролем, для них регламентируется продолжительность рабочего дня, выдается спецодежда, приборы индивидуального дозиметрического контроля

При работе с радиоактивными веществами безопасность зависит в значительной степени от своевременного выявления и измерения уровня излучения.

Измерение осуществляется специальными приборами - радиометрами, использующих различные методы - ионизационный сцинтилляционный, фотографический и химический. Для измерения альфа-, бета-, гамма и рентгеновского излучений и тепловых нейтронов применяются универсальные радиометры типов РКС2-01 и УИМ2-1 и другие.

В процессе работы с радиоактивными веществами большое значение имеет применение средств индивидуальной защиты. Они должны предохранять кожу от загрязнений радиоактивными веществами и предотвращать их попадание внутрь организма.

К средствам индивидуальной защиты относятся: спецодежду, перчатки, респираторы, пневмокостюмы, бахилы. Для непосредственной работы с радиоактивными веществами применяют средства индивидуальной защиты, изготовлены из прочного, хорошо дезактивированного поливинилхлоридного пластика.

Органы дыхания защищают респираторами "Снежок-К", "чтб-1" и "Лепесток". В процессе работы в ремонтной зоне, при осмотре и вскрытии боксов и другого технологического оборудования, загрязненного радиоактивными веществами, применяют пневмошлемы типа "Лиз-4" с индивидуальной подачей в них воздуха.

Рентгеновское излучение

В процессе технической эксплуатации радиоаппаратуры, когда питающее напряжение радиоаппаратуры выше 15 кВ, необходимо обязательно использовать защитные средства для предотвращения облучению операторов и инженерно-технических работников рентгеновским излучением, так как при таких напряжениях рентгеновское излучение рассеивается в окружающем пространстве производственного помещения.

Предельно допустимые дозы рентгеновского облучения предусмотрены санитарными нормами:

Для всего тела человека в течение недели не более 100 мр (миллирентген)

Только рук - 500 мр (80 мр в день).

В смежных помещениях с рентгеновской установкой доза облучения в течение недели не должна превышать 10 мр, а в близлежащих домах мощность дозы не должна превышать дозу нормального фона более чем на 0,01 мр в час.

Как защитные средства от действия мягких рентгеновских лучей применяются экраны из стального листа (1 мм), освинцованного алюминия (3 мм), покрытого оловом стекла (8 мм) или специальной резины (7.1).

Смотровые окна в рентгеновских установках выполняют из плексигласа (30 мм) или покрытого оловом стекла.

С целью предотвращения рассеивания рентгеновского излучения в производственном помещении, устраивают защитные ограждения из различных защитных материалов, например, свинца или бетона.

При кратковременных работах на рентгеновских установках в качестве средств индивидуальной защиты применяются фартуки, перчатки, шапочки, изготовленные из покрытой оловом резины.

Литература: , , , .

Вопросы для самоконтроля

1. В каких отраслях народного хозяйства используются ионизирующие излучения?

2. Какие три стадии хронической лучевой болезни Вы знаете?

3. Как оказывается влияние радиоактивных излучений на организм человека?

4. От каких факторов зависят поражения радиоактивными веществами?

5. Какая физическая суть единицы измерения ионизирующего излучения "зиверт"?

6. В чем физический смысл единицы "рентген"?

7. В каком документе установлены нормы радиационной безопасности?

9. Какие работники не допускаются к работе с источниками ионизирующего излучения?

10. Какие материалы применяют для защитных экранов?

11. Как транспортируют и хранят радиоактивные вещества?

12. Какой принцип защиты "расстоянием" и "время"?

13. Какие методы контроля применяются для измерения радиоактивных излучений?

14. Какие существуют приборы для измерения радиоактивных излучений?

15. Какие следует применять индивидуальные средства защиты от радиоактивных излучений?

Рентгеновское излучение обладает биологическим действием на органы, ткани и на весь организм в целом. Необходимым для работы в рентгеновских кабинетах является создание условий безопасности как для больного, так и для обслуживающего персонала.

Защитные мероприятия сводятся в общем к следующим трем видам:
- защита экранированием,
- защита временем,
- защита расстоянием.

Защитные экраны - это комплекс сооружений из поглощающих материалов, расположенных между источником рентгеновского излучения и телом облучаемого. Сильнее всего рентгеновы лучи поглощаются свинцом благодаря его высокому атомному весу и большому порядковому числу в таблице Менделеева. Поэтому защитные экраны делаются из свинца или из материала, в котором имеется свинец. Изготовляют защитные ширмы различных размеров, фартуки, перчатки из просвинцованной резины и т. д. Для защиты глаз и лица исследователя флюоресцирующий экран со стороны врача покрывается просвинцованным стеклом.

У больных органы , не подлежащие исследованию, должны быть надежно экранированы от облучения за счет уменьшения объема пучка излучения, или закрыты защитными приспособлениями. Обычные строительные (материалы (бетон, кирпич) также достаточно сильно поглощают рентгеновы лучи. При расчете защитного действия этих материалов надо только знать их свинцовый эквивалент, т. е. величину, показывающую скольким миллиметрам свинца соответствует в отношении защиты от рентгеновского излучения определенная толщина данного строительного материала.

Защита временем предусматривает ограниченное пребывание в сфере воздействия рентгеновского излучения. При исследованиях больных необходимо стремиться к тому, чтобы время, в течение которого больной был вынужден находиться под лучами, было минимальным.

Защита расстоянием основана на использовании закона обратных квадратов. Отсюда и правило: как обследуемые, так и персонал должны находиться на максимальном расстоянии от трубки рентгеновского аппарата.

Рентгеноскопия

Методы рентгенологического исследования делятся на основные и специальные. К основным относятся рентгеноскопия и рентгенография, а специальным, - все остальные методы, связанные с использованием рентгеновского излучения.

Рентгеноскопия - просвечивание органов и систем с применением рентгеновых лучей. Рентгенография - производство снимков с помощью рентгеновского излучения. Каждый из этих методов имеет свои особенности, преимущества, недостатки и показания.
Рентгеноскопию можно подразделить на следующие виды: рентгеноскопия с флюоресцирующего экрана, скопил с экрана электронно-оптического усилителя и скопия с кинескопа телевизора.

Показаниями к рентгеноскопии надо считать только обследование больных с заболеваниями органов грудной и брюшной полостей, преимущественно взрослого населения. Этот метод должен ограниченно использоваться в детской практике и не должен применяться для целей профилактических осмотров.

Скопия с экрана электронно-оптического усилителя. Введение электронно-оптического усилителя в клиническую практику в корне изменило отношение к рентгеноскопии и способствовало дальнейшему развитию этого метода на новой основе.

Благодаря использованию ЭОУ стало возможным широкое внедрение для диагностических целей зондирования сосудов, полостей сердца, интраоперационные изучения желчевыделительной системы, рент-генохирургические операции.
К недостаткам этого метода следует добавить невозможность рентгенопальпации под контролем экрана. Существенным неудобством ЭОУ остается то, что окуляр или оптическое приспособление ЭОПа можно рассматривать в лучшем случае двум исследователям при нерегулируемой яркости и резкости изображения.

Скопия с экрана телевизора . Это более совершенный вид визуального наблюдения за функционирующими и системами человека. Применение рентгенотелевидения исключает все выше перечисленные недостатки рентгеноскопии и скопии с экрана ЭОП.

Одним из немногих недостатков рентгенотелевидения является небольшое поле обзора по сравнению с флюоресцирующим экраном рентгеноаппарата. На экране телевизора отображается поле, которое охватывает ЭОУ, оптимальным диаметром усилителя считается 22,5 см (9 дюймов), а флюоресцирующий экран рентгеноаппарата 35х35 см.

Медицинское применение “R-лучей” основано на их проникающей способности, ее зависимости от атомного номера вещества “Z” и на их биологическом действии. Их используют в лечебных и диагностических целях.

В рентгенодиагностики различают:

1) Рентгеноскопия - это разновидность рентгенодиагностики, где используется жесткое “R- излучение”. Больной располагается между “R- трубкой” и экраном, покрытом сульфидами цинка с добавкой солей кадмия. При прохождении “R- лучей” через тело они поглощаются мягкими тканями и костным веществом неодинаково => одни участки экрана более светлые (большее число R- лучей), другие- более темные и на экране возникает теневое изображение внутренних органов.

2) Рентгенография - разновидность рентгенодиагностики (используется жесткое R- излучение). При этом экран заменяется фотопленкой большого размера, находящейся в специальной кассете, непроницаемой для видимого света. Под действием “R- лучей” фотопленка темнеет. Получаемый при этом снимок дает негативное изображение по отношению к изображению на экране: места, темные на экране, будут светлыми на снимке и наоборот .

Фотография дает более четкое изображение, на ней можно рассмотреть больше деталей и т.д. Разновидностью рентгенографии является флюорография - съемка изображения на специальную пленку с люминесцентным экраном. Флюорография позволяет выполнить до 100 снимков в час.

3) Рентгенотерапия - это лечебное воздействие при помощи рентгеновских лучей. При этом используется ионизирующее и бактерицидное свойства “R- лучей”. При прохождении через ткани организма R-лучи вызывают интенсивную ионизацию молекул и губительного воздействуют на очаги бактериального характера и злокачественные опухоли.

4)Рентгеноструктурный анализ - исследование внутренней структуры вещества с помощью R- лучей. При этом получают рентгенограммы, по которым можно судить о строении исследуемого вещества. Этим методом была подтверждена правильность основных положений атомно - молекулярной теории строения вещества.

Защита от рентгеновского излучения .

В медицине используют три способа защиты:

1) Защита временем - состоит в сокращении времени облучения до “min”.

2) Защита расстоянием - состоит в увеличении расстояния от источника до

максимального значения.

3) Защита экранированием - состоит в использовании материала, хорошо

поглощающего R- излучение. Кожух трубки защищается свинцом, врач за-

щищается ширмой из просвинцованной резины, соседние помещения за-

щищаются штукатуркой, в которую добавлены соединения бария (Ва).

Сам Рентген счастливо избежал этого потому, что при экспериментах с открытыми им лучами он, для предотвращения почернения фотографических пластинок, помещался в специальном шкафу, обитом цинком, одна сторона которого, обращенная к находившейся вне ящика трубке, была к тому же еще обита свинцом.

Открытие рентгеновых лучей означало также новую эпоху в развитии физики и всего естествознания. Оно оказало глубокое влияние и на последующее развитие техники. По выражению А. В. Луначарского, "открытие Рентгена дало изумительной тонкости ключ, позволяющий проникнуть в тайны природы и строение материи".

Средства индивидуальной и коллективной защиты в рентгенодиагностике.

В настоящее время для защиты от рентгеновского излучения при использовании его в целях медицинской диагностики сформировался комплекс защитных средств, которые можно разделить на следующие группы:

· средства защиты от прямого неиспользуемого излучения;

· средства индивидуальной защиты персонала;

· средства индивидуальной защиты пациента;

· средства коллективной защиты, которые, в свою очередь, делятся на стационарные и передвижные.

Наличие большинства из этих средств в рентгенодиагностическом кабинете и основные их защитные свойства нормируются "Санитарными правилами и нормами СанПиН 2.6.1.1192-03", введенными в действие 18 февраля 2003 г., а также ОСПОРБ-99 и НРБ-99. Данные правила распространяются на проектирование, строительство, реконструкцию и эксплуатацию рентгеновских кабинетов независимо от их ведомственной принадлежности и формы собственности, а также на разработку и производство рентгеновского медицинского оборудования и защитных средств.

В РФ разработкой и производством средств радиационной защиты для рентгенодиагностики занято около десятка фирм, преимущественно новых, которые были созданы в период перестройки, что связано, прежде всего, с достаточно простой технологической оснасткой и стабильными потребностями рынка. Традиционные производства защитных материалов, являющихся сырьем для производства рентгенозащитных средств, сконцентрированы на специализированных химических предприятиях. Так, например, Ярославский завод резинотехнических изделий практически является монополистом по производству рентгенозащитной резины целого спектра свинцовых эквивалентов, применяемой в производстве защитных изделий стационарной (отделка стен небольших рентгенокабинетов) и индивидуальной защиты (рентгенозащитная одежда). Листовой свинец, применяемый для изготовления средств коллективной защиты (защита стен, пола, потолка рентгенокабинетов, а также жесткие защитные ширмы и экраны), производится согласно ГОСТам на специализированных заводах по переработке цветных металлов. Концентрат баритовый КБ-3, применяемый при стационарной защите (защитная штукатурка рентгенокабинетов), производится в основном на Салаирском горно-обогатительном комбинате. Производством рентгенозащитного стекла ТФ-5 (защитные смотровые окна), практически монопольно владеет Лыткаринский завод оптического стекла. Изначально все работы по созданию рентгенозащитных средств в нашей стране велись во Всероссийском научно-исследовательском институте медицинской техники. Следует отметить, что практически все современные отечественные производители рентгенозащитных средств и по сей день используют эти разработки. Так, например, в конце восьмидесятых годов ВНИИМТ впервые разработал полную номенклатуру бессвинцовых защитных средств для пациентов и персонала на основе смесей концентратов оксидов редкоземельных элементов, которые в 5 качестве отходов скопились в достаточных количествах на предприятиях Минатома СССР. Эти модели явились основой для разработок) многочисленных новых производителей, таких как "Рентген-Комплект", "Гаммамед", "Фомос", "Гелпик", "Защита Чернобыля".

Основные требования к передвижным средствам радиационной защиты сформулированы в санитарных правилах и нормах СанПиН 2003.

Защита от используемого прямого излучения предусматривается в конструкции самого рентгеновского аппарата и отдельно, как правило, не выпускается (исключение могут составлять фартуки для экранно-снимочных устройств, приходящие в негодность при эксплуатации и подлежащие замене). Стационарная защита кабинетов выполняется на этапе строительно-отделочных работ и не является изделием медицинской техники. Однако в СанПиН предусмотрены нормативы по составу площади применяемых помещений (табл. 1,2) .

Таблица 1 . Площадь процедурной с разными рентгеновскими аппаратами

Рентгеновский аппарат Площадь, кв. м (не менее)
Предусматривается
использование
каталки
Не предусматривается
использование
каталки
Рентгенодиагностический комплекс (РДК) с полным набором штативов (ПСШ, стол снимков, стойка снимков, штатив снимков) 45 40
РДК с ПСШ, стойкой снимков, штативом снимков 34 26
РДК с ПСШ и универсальной стойкой-штативом, рентгенодиагностический аппарат с цифровой обработкой изображения 34 26
РДК с ПСШ, имеющим дистанционное управление 24 16
Аппарат для рентгенодиагностики методом рентгенографии (стол снимков, стойка для снимков, штатив снимков) 16 16
Аппарат для рентгенодиагностики с универсальной стойкой-штативом 24 14
Аппарат для близкодистанционной рентгенотерапии 24 16
Аппарат для дальнедистанционной рентгенотерапии 24 20
Аппарат для маммографии 6
Аппарат для остеоденситометрии 8

Таблица 2. Состав и площади помещений для рентгеностоматологических исследований

Наименование помещений Площадь кв. м (не менее)
1. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с обычной пленкой без усиливающего экрана:
- процедурная 8
- фотолаборатория 6
2. Кабинет рентгенодиагностики заболеваний зубов методом рентгенографии с дентальным аппаратом, работающим с высокочувствительным пленочным и/или цифровым приемником изображения, в том числе с визиографом (без фотолаборатории):
- процедурная 6
3. Кабинет рентгенодиагностики методом панорамной рентгенографии или панорамной томографии:
- процедурная 8
- комната управления 6
- фотолаборатория 8

На этапе чистовой отделки рентгенокабинета, исходя из СанПиН, рассчитывается уровень дополнительной защиты стен, потолка и пола процедурной. И производится дополнительная штукатурка расчетной толщины радиационно-защитным баритобетоном. Дверные проемы защищаются с помощью специальных рентгенозащитных дверей требуемого свинцового эквивалента. Смотровое окно между процедурной и пультовой изготавливается из рентгенозащитного стекла марки ТФ-5, в ряде случаев применяются рентгенозащитные ставни, защищающие оконные проемы.

Таким образом, самостоятельными изделиями для защиты от рентгеновского излучения (главным образом, рассеиваемого пациентом и элементами оснащения кабинета) являются носимые и передвижные средства защиты пациентов и персонала, обеспечивающие безопасность при проведении рентгенологических исследований. В таблице приведена номенклатура передвижных и индивидуальных средств защиты и регламентируется их защитная эффективность в диапазоне анодного напряжения 70-150 кВ.

Рентгеновские кабинеты различного назначения должны быть оснащены средствами защиты в соответствии с проводимыми видами рентгеновских процедур (табл. 3) .

Таблица 3. Номенклатура обязательных средств радиационной защиты

Средства радиационной защиты Назначение рентгеновского кабинета защиты
флюорография рентгеноскопия рентгенография урография маммография денситометрия ангинография
Большая защитная ширма (при отсутствии комнаты управления или др. средств) 1 1 1 1 1 1
Малая защитная ширма 1 1 1
Фартук защитный односторонний 1 1 1 1 1 1
Фартук защитный двусторонний 1 1
Воротник защитный 1 1 1 1 1 1
Жилет защитный с юбкой защитной 1 1 1
Передник для защиты гонад или юбка защитная 1 1 1 1 1 1
Шапочка защитная 1 1 1
Очки защитные 1 1 1
Перчатки защитные 1 1 1
Набор защитных пластин 1 1 1

В зависимости от принятой медицинской технологии допускается корректировка номенклатуры. При рентгенологическом исследовании детей используют защитные средства меньших размеров и расширенный их ассортимент.

К передвижным средствам радиационной защиты относятся:

· большая защитная ширма персонала (одно-, двух-, трехстворчатая) - предназначена для защиты от излучения всего тела человека;

· малая защитная ширма персонала - предназначена для защиты нижней части тела человека;

· малая защитная ширма пациента - предназначена для защиты нижней части тела пациента;

· экран защитный поворотный - предназначен для защиты отдельных частей тела человека в положении стоя, сидя или лежа;

Достаточно большое количество медицинских обследований использует рентгеновские лучи. Об их вреде на организм написаны огромные трактаты, поэтому эта сторона их применения изучена максимально хорошо.

Чтобы обезопасить всех присутствующих в кабинете в момент проведения диагностики, используются специальные защитные двери, ширмы и листы из свинца. Учитывая их важное предназначение, необходимо максимально тщательно подходить к компаниям-изготовителям защитной продукции, доверяя только таким спецам, как, например, компания «МетПромСтар», которая занимается металлопрокатом уже более 10 лет. Ее партнерами за это длительное время стали все лидеры отрасли, что говорит уже о многом. Поэтому, заказывая свинцовые листы для защиты от рентгеновского излучения, можно быть уверенными в стопроцентном качестве каждой единицы, не жалея ни минуты о потраченных на покупку средствах. Обслуживание компания «МетПромСтар» вывела на европейский уровень, предлагая своим клиентам и партнерам защиту от рентгеновских лучей наилучшего качества.

Свинцовые листы для защиты от рентген-лучей: какими они должны быть

Свинец – один из самых используемых металлов в мировой промышленности. Об этом говорят и следующие данные: всего за 5 месяцев его добывают около 2 000 000 тонн. Большая часть сырья уходит в машиностроение, а остальное используют для создания защитных приспособлений от радиации и шума. Практически ни один рентген-кабинет в частном или государственном медицинском учреждении не обходится без свинцовой обшивки стен, защитных дверей из свинца, мобильных свинцовых ширм, а также индивидуальных средств защиты медицинского персонала. Весь этот ассортимент имеется в каталоге компании «МетПромСтар», поэтому купить свинцовые листы и защитные двери можно оптом, сэкономив при этом внушительную сумму.

Исследование рентген-лучами считается одним из самых точных, предоставляя врачам наиболее полную информацию об исследованном органе. На снимке отображается проекция внутреннего органа человека, увидеть который другим способом не представляется возможным. Рентген в России стал применяться более 100 лет назад, но это были в основном частные кабинеты. Первая же государственная клиника была создана 95 лет назад, после чего рентген-диагностику стали использовать все более часто. Сфера ее применения с тех времен существенно расширилась, поэтому и защита от облучения стала более актуальной.

Чтобы защита от радиационных лучей стала стопроцентной, необходимо использовать свинец не менее 20 см толщиной. Именно этот материал используется при создании экранирования в рентген-кабинетах. Листовой свинец необходимой толщины можно заказать в «МетПромСтар» по выгодным ценам, а его доставка будет осуществлена в любой населенный пункт страны.

Все нормы защитных приспособлений в кабинете с рентгеновским излучением регламентируются СанПин №2,6,1. 1192-3. Защита должна быть такой, чтобы экранирующий материал снижал облучение до минимума. И достичь этого можно только правильно подобранными материалами. Это означает, что для каждого конкретного кабинета понадобятся свинцовые листы определенного размера и толщины, что обусловлено размерами самого помещения. Нельзя устанавливать в рентген-кабинете первые попавшиеся листы из свинца, не учитывая его плановые особенности. Способность материала обеспечивать необходимые по нормам параметры защиты называется «свинцовый эквивалент», что означает определенное числовое значение, указывающее на толщину свинцового шара. Так, стационарные средства защиты (двери и окна) должны превышать указанный свинцовый эквивалент на четверть.

Прежде чем устанавливать защиту рентген-кабинета, необходимо провести предварительный расчет каждого из защитных параметров. Свинцовые листы и двери должны четко соответствовать указанным параметрам, не отклоняясь от них ни на миллиметр.