Земля, так же, как и многие другие планеты, имеет слоистое внутреннее строение. Наша планета состоит из трех основных слоев. Внутренний слой – это ядро, наружный – земная кора, а между ними размещена мантия.

Ядро представляет собой центральную часть Земли и расположено на глубине 3000-6000 км. Радиус ядра составляет 3500 км. По мнению ученых, ядро состоит из двух частей: внешней – вероятно, жидкой, и внутренней - твердой. Температура ядра составляет около 5000 градусов. Современные представления о ядре нашей планеты получены в ходе длительных исследований и анализа полученных данных. Так, доказано, что в ядре планеты содержание железа достигает 35%, что обусловливает его характерные сейсмические свойства. Внешняя часть ядра представлена вращающимися потоками никеля и железа, которые хорошо проводят электрический ток.Происхождение магнитного поля Земли связано именно с этой частью ядра, так как глобальное магнитное поле создается электрическими токами, протекающими в жидком веществе внешнего ядра. Из-за очень высокой температуры внешнее ядро оказывает значительное влияние на соприкасающиеся с ним участки мантии. В некоторых местах возникают громадные тепломассопотоки, направленные к поверхности Земли. Внутреннее ядро Земли твердое, также имеет высокую температуру. Ученые полагают, что такое состояние внутренней части ядра обеспечивается очень высоким давлением в центре Земли, достигающим 3 млн. атмосфер. При увеличении расстояния от поверхности Земли повышается сжатие веществ, при этом многие из которых переходят в металлическое состояние.

Промежуточный слой – мантия – покрывает ядро. Мантия занимает около 80% объема нашей планеты, это самая большая часть Земли. Мантия расположена кверху от ядра, но не достигает поверхности Земли, снаружи она соприкасается с земной корой. В основном, вещество мантии находится в твердом состоянии, кроме верхнего вязкого слоя толщиной примерно 80 км. Это астеносфера, в переводе с греческого языка означает «слабый шар». По мнению ученых, вещество мантии непрерывно движется. При увеличении расстояния от земной коры в сторону ядра происходит переход вещества мантии в более плотное состояние.

Снаружи мантию покрывает земная кора – внешняя прочная оболочка. Ее толщина варьирует от нескольких километров под океанами до нескольких десятков километров в горных массивах. На долю земной коры приходится всего 0,5% общей массы нашей планеты. В состав коры входят оксиды кремния, железа, алюминия, щелочных металлов. Континентальная земная кора делится на три слоя: осадочный, гранитный и базальтовый. Океаническая земная кора состоит из осадочного и базальтового слоев.

Литосферу Земли формирует земная кора вместе с верхним слоем мантии. Литосфера слагается из тектонических литосферных плит, которые как будто «скользят» по астеносфере со скоростью от 20 до 75 мм в год. Двигающиеся друг относительно друга литосферные плиты различны по величине, а кинематику передвижения определяет тектоника плит.

Видео презентация "Внутреннее строение Земли":

Презентация "География как наука"

Похожие материалы:

Оболочечное строение Земли. Физическое состояние (плотность, давление, температура), химический состав, движение сейсмических волн во внутренних частях Земли. Земной магнетизм. Источники внутренней энергии планеты. Возраст Земли. Геохронология.

Земля, как и другие планеты, имеет оболочечное строение. При прохождении сквозь тело Земли сейсмических волн (продольных и поперечных) скорости их на некоторых глубинных уровнях заметно меняются (причем скачкообразно), что свидетельствует об изменении свойств проходимой волнами среды. Современные представления о распределении плотности и давления внутри Земли даны в таблице.

Изменение плотности и давления с глубиной внутри Земли

(С.В Калесник, 1955)

Глубина, км

Плотность, г/см 3

Давление, млн. атм

Из таблицы видно, что в центре Земли плотность достигает 17,2 г/см 3 и что она особенно резким скачком (от 5,7 к 9,4) меняется на глубине 2900 км, а затем на глубине 5 тыс. км. Первый скачок позволяет выделить плотное ядро, а второй – подразделить это ядро на внешнюю (2900-5000 км) и внутреннюю (от 5 тыс. км до центра) части.

Зависимость скорости продольных и поперечных волн от глубины

Глубина, км

Скорость продольных волн, км/сек

Скорость поперечных волн, км/сек

60 (сверху)

60 (снизу)

2900 (сверху)

2900 (снизу)

5100 (сверху)

5100 (снизу)

Таким образом, имеется в сущности два резких перелома скоростей: на глубине 60 км и на глубине 2900 км. Иными словами отчетливо обособляются земная кора и внутреннее ядро. В промежуточном между ними поясе, а также внутри ядра налицо лишь изменение темпа увеличения скоростей. Видно также, что Земля до глубины 2900 км находится в твердом состоянии, т.к. через эту толщу свободно проходят поперечные упругие волны (волны сдвига), которые только и могут возникать и распространятся в твердой среде. Прохождение поперечных волн сквозь ядро не наблюдалось и это давало основания считать его жидким. Однако новейшие расчеты показывают, что модуль сдвига в ядре невелик, но все же не равен нулю (как это характерно для жидкости) и, стало быть, ядро Земли ближе к твердому, чем жидкому состоянию. Разумеется, в данном случае понятия «твердого» и «жидкого» нельзя отождествлять с аналогичными понятиями, применяемыми к агрегатным состояниям вещества наземной поверхности: внутри Земли господствуют высокие температуры и огромные давления.

Таким образом, во внутреннем строении Земли выделяют земную кору, мантию и ядро.

Земная кора – первая оболочка твердого тела Земли, имеет мощность 30-40 км. По объему она составляет 1,2% объема Земли, по массе – 0,4%, средняя плотность равна 2,7 г/см 3 . Состоит преимущественно из гранитов; осадочные породы в ней имеют подчиненное значение. Гранитная оболочка, в составе которой огромную роль играют кремний и алюминий, называется «сиалической» («сиаль»). От мантии земная кора отделена сейсмическим разделом, названнымграницей Мохо , от фамилии сербского геофизика А. Мохоровичича (1857-1936), открывшего этот «сейсмический раздел». Эта граница четкая и наблюдается во всех местах Земли на глубинах от 5 до 90 км. Раздел Мохо не является просто границей между породами различного типа, а представляет собой плоскость фазового перехода между эклогитами и габбро мантии и базальтами земной коры. При переходе из мантии в кору давление так падает, что габбро переходят в базальты (кремний, алюминий + магний – «сима» - силиций+магний). Переход сопровождается увеличением объема на 15% и, соответственно, уменьшением плотности. Поверхность Мохо считают нижней границей земной коры. Важная особенность этой поверхности состоит в том, что она в общих чертах представляет собой как бы зеркальное отражение рельефа земной поверхности: под океанами она выше, под континентальными равнинами ниже, под наиболее высокими горами опускается ниже всего (это так называемые корни гор).

Выделяют четыре типа земной коры, они соответствуют четырем наиболее крупным формам поверхности Земли. Первый тип называется материковым, его мощность 30-40 км, под молодыми горами она увеличивается до 80 км. Этот тип земной коры соответствует в рельефе материковым выступам (включается подводная окраина материка). Наиболее распространено деление ее на три слоя: осадочный, гранитный и базальтовый. Осадочный слой , толщиной до 15-20 км, сложен слоистыми осадками (преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы). Гранитный слой (мощность 10-15 км) состоит из метаморфических и изверженных кислых пород с содержанием кремнезема свыше 65 %, близких по своим свойствам к граниту; наиболее распространены гнейсы, гранодиориты и диориты, граниты, кристаллические сланцы). Нижний слой, наиболее плотный, толщиной 15-35 км, получил название базальтового за сходство с базальтами. Средняя плотность материковой коры 2,7 г/см 3 . Между гранитным и базальтовым слоями лежит граница Конрада, названная по фамилии открывшего ее австрийского геофизика. Название слоев – гранитный и базальтовый – условны, они даны по скоростям прохождения сейсмических волн. Современное название слоев несколько иное (Е.В. Хаин, М.Г. Ломизе): второй слой называется гранитно-метаморфическим, т.к. собственно гранитов в нем почти нет, сложен он гнейсами и кристаллическими сланцами. Третий слой – гранулитобазитовый, его образуют сильнометаморфизованные горные породы.

Второй тип земной коры – переходный, или геосинклинальный – соответствует переходным зонам (геосинклиналям). Расположены переходные зоны у восточных берегов материка Евразии, у восточных и западных берегов Северной и Южной Америки. Имеют следующее классическое строение: котловина окраинного моря, островные дуги и глубоководный желоб. Под котловинами морей и глубоководными желобами нет гранитного слоя, земная кора состоит из осадочного слоя повышенной мощности и базальтового. Гранитный слой появляется только в островных дугах. Средняя мощность геосинклинального типа земной коры 15-30 км.

Третий тип – океаническая земная кора, соответствует ложу океана, мощность коры 5-10 км. Имеет двухслойное строение: первый слой – осадочный, образован глинисто-кремнисто-карбонатными породами; второй слой состоит из полнокристаллических магматических пород основного состава (габбро). Между осадочным и базальтовым слоями выделяется промежуточный слой, состоящий из базальтовых лав с прослоями осадочных пород. Поэтому иногда говорят о трехслойном строении океанической коры.

Четвертый тип – рифтогенная земная кора, она характерна для срединно-океанических хребтов, ее мощность 1,5-2 км. В срединно-океанических хребтах близко к поверхности подходят породы мантии. Мощность осадочного слоя 1-2 км, базальтовый слой в рифтовых долинах выклинивается.

Существуют понятия «земная кора» и «литосфера». Литосфера – каменная оболочка Земли, образованная земной корой и частью верхней мантии. Мощность ее составляет 150-200 км, ограничена астеносферой. Только верхняя часть литосферы называется земной корой.

Мантия по объему составляет 83% объема Земли и 68% ее массы. Плотность вещества возрастает до 5,7 г/см 3 . На границе с ядром температура увеличивается до 3800 0 С, давление – до 1,4 х 10 11 Па. Выделяют верхнюю мантию до глубины 900 км и нижнюю – до 2900 км. В верхней мантии на глубине 150-200 км присутствует астеносферный слой. Астеносфера (греч. asthenes – слабый) – слой пониженной твердости и прочности в верхней мантии Земли. Астеносфера – основной источник магмы, в ней располагаются очаги питания вулканов и происходит перемещение литосферных плит.

Ядро занимает 16% объема и 31% массы планеты. Температура в нем достигает 5000 0 С, давление – 37 х 10 11 Па, плотность – 16 г/см 3 . Ядро делится на внешнее, до глубины 5100 км, и внутреннее. Внешнее ядро – расплавленное, состоит из железа или металлизованных силикатов, внутреннее – твердое, железоникелевое.

От плотности вещества зависит масса небесного тела, масса определяет размеры Земли и силу тяжести. Наша планета имеет достаточные размеры и силу тяжести, она удержала гидросферу и атмосферу. В ядре Земли происходит металлизация вещества, обусловливая образование электрических токов и магнитосферы.

Вокруг Земли существуют разнообразные поля, наиболее существенное влияние на ГО оказывают гравитационное и магнитное.

Гравитационное поле на Земле – это поле силы тяжести. Сила тяжести – равнодействующая сила между силой притяжения и центробежной силой, возникающей при вращении Земли. Центробежная сила достигает максимума на экваторе, но и здесь она мала и составляет 1/288 от силы тяжести. Сила тяжести на земле в основном зависит от силы притяжения, на которую оказывает влияние распределение масс внутри Земли и на поверхности. Сила тяжести действует повсеместно на земле и направлена по отвесу к поверхности геоида. Напряженность гравитационного поля равномерно уменьшается от полюсов к экватору (на экваторе больше центробежная сила), от поверхности вверх (на высоте 36 000 км равна нулю) и от поверхности вниз (в центре Земли сила тяжести равна нулю).

Нормальным гравитационным полем Земли называется такое, которое было бы у Земли, если бы она имела форму эллипсоида с равномерным распределением масс. Напряженность реального поля в конкретной точке отличается от нормального, возникает аномалия гравитационного поля. Аномалии могут быть положительными и отрицательными: горные хребты создают дополнительную массу и должны бы вызвать положительные аномалии, океанические впадины, наоборот – отрицательные. Но на самом деле земная кора находится в изостатическом равновесии.

Изостазия (от греч. isostasios – равный по весу) – уравновешивание твердой, относительно легкой земной коры более тяжелой верхней мантией. Теория равновесия была выдвинута в 1855 г. английским ученым Г.Б. Эйри. Благодаря изостазии избытку масс выше теоретического уровня равновесия соответствует недостаток их внизу. Это выражается в том, что на определенной глубине (100-150 км) в слое астеносферы вещество перетекает в те места, где имеется недостаток масс на поверхности. Только под молодыми горами, где еще полностью компенсация не произошла, наблюдаются слабые положительные аномалии. Однако равновесие непрерывно нарушается: в океанах происходит отложение наносов, под их тяжестью дно океанов прогибается. С другой стороны, горы разрушаются, высота их уменьшается, значит уменьшается и масса.

Сила тяжести создает фигуру Земли, она является одной из ведущих эндогенных сил. Благодаря ей выпадают атмосферные осадки, текут реки, формируются горизонты подземных вод, наблюдаются склоновые процессы. Силой тяжести объясняется максимальная высота гор; считается, что на нашей Земле не может быть гор выше 9 км. Сила тяжести удерживает газовую и водную оболочки планеты. Атмосферу планеты покидают только самые легкие молекулы – водорода и гелия. Давление масс вещества, реализующееся в процессе гравитационной дифференциации в нижней мантии, наряду с радиоактивным распадом порождает тепловую энергию – источник внутренних (эндогенных) процессов, перестраивающих литосферу.

Тепловой режим поверхностного слоя земной коры (в среднем до 30 м) имеет температуру, определяемую солнечным теплом. Это гелиометрический слой , испытывающий сезонные колебания температуры. Ниже – еще более тонкий горизонт постоянной температуры (около 20 м), соответствующий среднегодовой температуре места наблюдения. Ниже постоянного слоя температура с глубиной нарастает – геотермический слой . Для количественного определения величины этого нарастания двумя взаимно связанными понятиями. Изменение температуры при углублении в землю на 100 м называется геотермическим градиентом (колеблется от 0,1 до 0,01 0 С/м и зависит от состава горных пород, условий их залегания), а расстояние по отвесу, на которое необходимо углубиться, чтобы получить повышение температуры на 1 0 , называется геотермической ступенью (колеблется от 10 до 100 м/ 0 С).

Земной магнетизм – свойство Земли, обусловливающее существование вокруг нее магнитного поля, вызванного процессами, происходящими на границе ядро-мантия. Впервые о том, что Земля – магнит, человечество узнало благодаря работам У. Гильберта.

Магнитосфера – область околоземного пространства, заполненная заряженными частицами, движущимися в магнитном поле Земли. Она отделена от межпланетного пространства магнитопаузой. Это внешняя граница магнитосферы.

В основе образования магнитного поля лежат внутренние и внешние причины. Постоянное магнитное поле образуется благодаря электрическим токам, возникающим во внешнем ядре планеты. Солнечные корпускулярные потоки образуют переменное магнитное поле Земли. Наглядное представление о состоянии магнитного поля Земли дают магнитные карты. Магнитные карты составляются на пятилетний срок – магнитную эпоху.

Нормальное магнитное поле было бы у Земли, будь она однородно намагниченным шаром. Земля в первом приближении представляет собой магнитный диполь – это стержень, концы которого имеют противоположные магнитные полюса. Места пересечения магнитной оси диполя с земной поверхностью называются геомагнитными полюсами . Геомагнитные полюсы не совпадают с географическими и медленно движутся со скоростью 7-8 км/год. Отклонения реального магнитного поля от нормального (теоретически рассчитанного) называются магнитными аномалиями. Они могут быть мировыми (Восточно-Сибирский овал), региональными (КМА) и локальными, связанными с близким залеганием к поверхности магнитных пород.

Магнитное поле характеризуется тремя величинами: магнитным склонением, магнитным наклонением и напряженностью. Магнитное склонение - угол между географическим меридианом и направлением магнитной стрелки. Склонение бывает восточным (+), если северный конец стрелки компаса отклоняется к востоку от географического, и западным (-), когда стрелка отклоняется к западу. Магнитное наклонение - угол между горизонтальной плоскостью и направлением магнитной стрелки, подвешенной на горизонтальной оси. Наклонение положительное, когда северный конец стрелки смотрит вниз, и отрицательное, если северный конец направлен вверх. Магнитное наклонение изменяется от 0 до 90 0 . Сила магнитного поля характеризуется напряженностью. Напряженность магнитного поля небольшая составляет на экваторе 20-28 А/м, на полюсе – 48-56 А/м.

Магнитосфера имеет каплевидную форму. На стороне, обращенной к Солнцу, ее радиус равен 10 радиусам Земли, на ночной стороне под влиянием «солнечного ветра» увеличивается до 100 радиусов. Форма обусловлена воздействием солнечного ветра, который, наталкиваясь на магнитосферу Земли, обтекает ее. Заряженные частицы, достигая магнитосферы, начинают двигаться по магнитным силовым линиям и образуют радиационные пояса. Внутренний радиационный пояс состоит из протонов, имеет максимальную концентрацию на высоте 3500 км над экватором. Внешний пояс образован электронами, простирается до 10 радиусов. У магнитных полюсов высота радиационных поясов уменьшается, здесь возникают области, в которых заряженные частицы вторгаются в атмосферу, ионизируя газы атмосферы и вызывая полярные сияния.

Географическое значение магнитосферы очень велико: она защищает Землю от корпускулярного солнечного и космического излучения. С магнитными аномалиями связан поиск полезных ископаемых. Магнитные силовые линии помогают ориентироваться в пространстве туристам, кораблям.

Возраст Земли. Геохронология.

Земля возникла как холодное тело из скопления твердых частиц и тел, подобных астероидам. Среди частиц были и радиоактивные. Попав внутрь Земли, они там распадались с выделением тепла. Пока размеры Земли были невелики, тепло легко уходило в межпланетное пространство. Но с нарастанием объема Земли производство радиоактивного тепла стало превышать его утечку, оно накапливалось и разогревало недра планеты, приводя их в размягченное. Пластическое состояние, которое и открыло возможности для гравитационной дифференциации вещества – всплывания более легких минеральных масс к поверхности и постепенного опускания более тяжелых – к центру. Интенсивность дифференциации с глубиной затухала, т.к. в этом же направлении в связи с увеличением давления возрастала вязкость вещества. Земное ядро не было захвачено дифференциацией, сохранило свой первозданный силикатный состав. Но резко уплотнилось из-за высочайшего давления, превысившего миллион атмосфер.

Возраст Земли устанавливается с помощью радиоактивного метода, применять его можно только к породам, содержащим радиоактивные элементы. Если считать, что весь аргон на Земле – продукт распада калия-49, то возраст Земли будет не менее 4 млрд. лет. Подсчеты О.Ю. Шмидта дают еще более высокую цифру – 7,6 млрд. лет. В.И. Баранов для исчисления возраста Земли взял отношение между современными количествами урана-238 и актиноурана (урана-235) в горных породах и минералах и получил возраст урана (вещества, из которого потом возникла планета) 5-7 млрд. лет.

Таким образом, возраст Земли определяется в интервале 4-6 млрд. лет. Историю развития земной поверхности удается пока непосредственно восстановить в общих чертах лишь начиная с тех времен, от которых сохранились древнейшие горные породы, т.е примерно за 3 – 3,5 млрд. лет (Калесник С.В.).

Историю Земли обычно делят на два эона: криптозой (скрытый и жизнь: нет останков скелетной фауны) и фанерозой (явный и жизнь). Криптозой включает две эры: архей и протерозой. Фанерозой охватывает последние 570 млн. лет, в нем выделяют палеозойскую, мезозойскую и кайнозойскую эры, которые, в свою очередь, делятся на периоды. Часто весь период до фанерозоя называют докембрием (кембрий – первый период палеозойской эры).

Периоды палеозойской эры:

Периоды мезозойской эры:

Периоды кайнозойской эры:

Палеоген (эпохи – палеоцен, эоцен, олигоцен)

Неоген (эпохи – миоцен, плиоцен)

Четвертичный (эпохи – плейстоцен и голоцен).

Выводы:

1.В основе всех проявлений внутренней жизни Земли лежат преобразования тепловой энергии.

2.В земной коре температура с удалением от поверхности возрастает (геотермический градиент).

3.Теплота Земли имеет своим источником распад радиоактивных элементов.

4.Плотность вещества Земли с глубиной увеличивается от 2,7 на поверхности до 17,2 в центральных частях. Давление в центре Земли достигает 3 млн. атм. Плотность увеличивается скачкообразно на глубинах 60 и 2900 км. Отсюда вывод – Земля состоит из объемлющих друг друга концентрических оболочек.

5.Земная кора слагается преимущественно породами типа гранитов, которые подстилаются породами типа базальтов. Возраст земли определяется в 4-6 млрд. лет.

Земля входит в состав системы, где центром является Солнце, в котором заключено 99,87% массы всей системы. Характерной особенностью всех планет Солнечной системы является их оболочечное строение: каждая планета состоит их ряда концентрических сфер, различающихся составом и состоянием вещества.

Земля окружена мощной газовой оболочкой - атмосферой. Она является своеобразным регулятором обменных процессов между Землей и Космосом. В составе газовой оболочки выделяется несколько сфер, отличающихся составом и физическими свойствами. Основная масса газового вещества заключена в тропосфере, верхняя граница которой, расположенная на высоте около 17 км на экваторе, снижается к полюсам до 8-10 км. Выше, на протяжении стратосферы и мезосферы, нарастает разреженность газов, сложно меняются термические условия.

Рис.1. Сравнение строения Земли и других планет земной группы

На высоте от 80 до 800 км располагается ионосфера - область сильно разреженного газа, среди частиц которого преобладают электрически заряженные. Самую наружную часть газовой оболочки образует экзосфера, простирающаяся до высоты 1800 км. Из этой сферы происходит диссипация наиболее легких атомов - водорода и гелия. Еще более сложно стратифицирована сама планета. Масса Земли оценивается в 5,98*1027 г, а ее объем - в 1,083*1027 см 3 . Следовательно, средняя плотность планеты составляет около 5,5 г/см 3 . Но плотность доступных нам горных пород равна 2,7-3,0 г/см 3 . Из этого следует, что плотность вещества Земли неоднородна.

Главнейшими методами изучения внутренних частей нашей планеты являются геофизические, в первую очередь наблюдения за скоростью распространения сейсмических волн, образующихся от взрывов или землетрясений. Подобно тому, как от камня, брошенного в воду, в разные стороны расходятся по поверхности воды волны, так в твердом веществе от очага взрыва распространяются упругие волны. Среди них выделяют волны продольных и поперечных колебаний. Продольные колебания представляют собой чередования сжатия и растяжения вещества в направлении распространения волны. Поперечные колебания можно представить как чередующиеся сдвиги в направлении, перпендикулярном распространению волны.

Волны продольных колебаний, или, как принято говорить, продольные волны, распространяются в твердом веществе с большей скоростью, чем поперечные. Продольные волны распространяются как в твердом, так и в жидком веществе, поперечные - только в твердом. Следовательно, если при прохождении сейсмических волн через какое-либо тело будет обнаружено, что оно не пропускает поперечные волны, то можно считать, что это вещество находится в жидком состоянии. Если через тело проходят оба типа сейсмических волн, то это - свидетельство твердого состояния вещества.

Скорость волн увеличивается с возрастанием плотности вещества. При резком изменении плотности вещества скорость волн будет скачкообразно меняться. В результате изучения распространения сейсмических волн через Землю обнаружено, что имеется несколько определенных границ скачкообразного изменения скоростей волн. Поэтому предполагается, что Земля состоит из нескольких концентрических оболочек (геосфер).

На основании установленных трех главных границ раздела выделяют три главные геосферы: земную кору, мантию и ядро. Первая граница раздела характеризуется скачкообразным увеличением скоростей продольных сейсмических волн от 6,7 до 8,1 км/с. Эта граница получила название раздела Мохоровичича (в честь сербского ученого А. Мохоровичича, который ее открыл), или просто граница М. Она отделяет земную кору от мантии. Плотность вещества земной коры, как указано выше, не превышает 2,7-3,0 г/см 3 . Граница М расположена под континентами на глубине от 30 до 80 км, а под дном океанов - от 4 до 10 км. Учитывая, что радиус Земного шара равен 6371 км, земная кора представляет собой тонкую пленку на поверхности планеты, составляющую менее 1% ее общей массы и примерно 1,5% ее объема.

Форма Земли

Форма Земли (геоид) близка к сплюснутому эллипсоиду. Расхождение геоида с аппроксимирующим его эллипсоидом достигает 100 метров. Средний диаметр планеты составляет примерно 12 742 км, а окружность - 40 000 км, поскольку метр в прошлом определялся как 1/10 000 000 расстояния от экватора до северного полюса через Париж (из-за неправильного учёта полюсного сжатия Земли эталон метра 1795 года оказался короче приблизительно на 0,2 мм, отсюда неточность).Вращение Земли создаёт экваториальную выпуклость, поэтому экваториальный диаметр на 43 км больше, чем полярный. Высочайшей точкой поверхности Земли является гора Эверест (8848 м над уровнем моря), а глубочайшей - Марианская впадина (10 994 м под уровнем моря). Из-за выпуклости экватора самыми удалёнными точками поверхности от центра Земли являются вершина вулкана Чимборасо в Эквадоре и гора Уаскаран в Перу.

Земля, как и другие планеты земной группы, имеет слоистое внутреннее строение. Она состоит из твёрдых силикатных оболочек (коры, крайне вязкой мантии), и металлического ядра. Внешняя часть ядра жидкая (значительно менее вязкая, чем мантия), а внутренняя - твёрдая.

Строение земной коры

Земная кора - термин, хотя и вошедший в естественнонаучный обиход в эпоху Возрождения, длительное время трактовался весьма свободно по причине того, что непосредственно определить толщину коры и изучить ее глубинные части было невозможно. Открытие сейсмических колебаний и создание метода определения скорости распространения их волн в средах разной плотности дали мощный импульс для изучения земных недр. С помощью сейсмографических исследований в начале XX в. было обнаружено принципиальное различие скорости прохождения сейсмических волн через горные породы, слагающие земную кору, и вещество мантии и объективно установлена граница их раздела (граница Мохоровичича). Тем самым понятие «земная кора» получило конкретное научное обоснование.


Рис.2. Внутреннее строение Земли

Экспериментальное изучение скорости распределения ударных упругих колебаний в горных породах с разной плотностью, с одной стороны, а с другой - «просвечивание» земной коры сейсмическими волнами во многих точках земной поверхности, позволили обнаружить, что земная кора состоит из следующих трех слоев, сложенных горными породами разной плотности:

1) Наружный слой, состоящий из осадочных горных пород, в которых волны сейсмических колебаний распространяются со скоростью 1-3 км/сек, что соответствуют плотности около 2,7 г/см 3 . Этот слой некоторые ученые называют осадочной оболочкой Земли.

2) Слой плотных кристаллических пород, слагающих под осадочной толщей верхнюю часть континентов, в котором сейсмические волны распространяются со скоростью от 5,5 до 6,5 км/сек. По причине того, что продольные сейсмические волны распространяются с указанной скоростью в гранитах и близких к ним по составу породам, условно эту толщу называют гранитным слоем, хотя в ней имеются самые разнообразные магматические и метаморфические породы. Преобладают гранитоиды, гнейсы, кристаллические сланцы, встречаются кристаллические породы среднего и даже основного состава (диориты, габбро, амфиболиты).

3) Слой более плотных кристаллических пород, образующий нижнюю часть континентов и слагающий океаническое дно. В породах этого слоя скорость распространения продольных сейсмических волн составляет 6,5-7,2 км/сек, что соответствует плотности около3,0 г/см 3 . Такие скорости и плотность характерны для базальтов, благодаря чему этот слой был назван базальтовым, хотя базальты не всюду полностью слагают этот слой.

Понятия «гранитный слой» и «базальтовый слой» условны и употребляются для обозначения второго и третьего горизонтов земной коры, характеризующихся скоростями распространения продольных сейсмических волн соответственно 5,5-6,5 и 6,5-7,2 км/сек.

Нижней границей базальтового слоя является поверхность Мохоровича. Ниже располагаются горные породы, относящиеся к веществу верхней мантии. Они обладают плотностью 3,2-3,3 г/м 3 и больше, скорость распространения продольных сейсмических волн в них 8,1 м/сек. Их состав соответствует ультраосновным породам (перидотитам, дунитам).

Следует обратить внимание на то, что термины «земная кора» и «литосфера» (каменная оболочка) не являются синонимами и имеют разное содержание. Литосфера - наружная оболочка земного шара, сложенная твердыми горными породами, в том числе породами верхней мантии ультраосновного состава. Земная кора - часть литосферы, лежащая выше границы Мохоровичича. В указанных границах общий объем земной коры составляет более 10 млрд. км 3 , а масса - свыше 1018 т.

Мантия Земли

Мантия - это силикатная оболочка Земли, расположенная между земной корой и ядром Земли.Мантия составляет 67 % массы Земли и около 83 % её объёма (без учёта атмосферы). Она простирается от границы с земной корой (на глубине 5-70 километров) до границы с ядром на глубине около 2900 км. От земной коры разделена поверхностью Мохоровичича, где скорость сейсмических волн при переходе из коры в мантию быстро увеличивается с 6,7-7,6 до 7,9-8,2 км/с. Мантия занимает огромный диапазон глубин, и с увеличением давления в веществе происходят фазовые переходы, при которых минералы приобретают всё более плотную структуру. Мантия Земли подразделяется на верхнюю мантию и нижнюю мантию. Верхний слой, в свою очередь, подразделяется на субстрат, слой Гутенберга и слой Голицына (средняя мантия).

Согласно современным научным представлениям, состав земной мантии считается похожим на состав каменных метеоритов, в частности хондритов. В состав мантии преимущественно входят химические элементы, находившиеся в твёрдом состоянии или в твёрдых химических соединениях во время формирования Земли: кремний, железо, кислород, магний и др. Эти элементы образуют с диоксидом кремния силикаты. В верхней мантии (субстрате), скорее всего, больше форстерита MgSiO 4 , глубже несколько увеличивается содержание фаялита Fe 2 SiO 4 .

В нижней мантии под воздействием очень высокого давления эти минералы разложились на оксиды (SiO 2 , MgO, FeO). Агрегатное состояние мантии обуславливается воздействием температур и сверхвысокого давления. Из-за давления вещество почти всей мантии находится в твёрдом кристаллическом состоянии, несмотря на высокую температуру. Исключение составляет лишь астеносфера, где действие давления оказывается слабее, чем температуры, близкие к точке плавления вещества. Из-за этого эффекта, по-видимому, вещество здесь находится либо в аморфном состоянии, либо в полурасплавленном.

Ядро Земли

Ядро - центральная, наиболее глубокая часть Земли, геосфера, находящаяся под мантией и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания - 2900 км. Средний радиус сферы - 3485 км. Разделяется на твёрдое внутреннее ядро радиусом около 1300 км и жидкое внешнее ядро радиусом около 2200 км, между которыми иногда выделяют переходную зону. Температура в центре ядра Земли достигает 6000 °С, плотность около 12,5 т/м 3 , давление до 360 ГПа (3,55 млн атмосфер). Масса ядра - 1,9354·1024 кг.

Вспомните! Что вы знаете о внутреннем строении Земли, о типах строения земной коры? Что такое платформы и геосинклинали? В чем различия древних и молодых платформ? По карте «Строение земной коры» в атласе «География материков и океанов» определите закономерности расположения древних платформ и складча­тых поясов разного возраста. Что вы знаете о рельефе, горах и равнинах, под влиянием каких процессов формируется рельеф Земли?

Земля имеет сложное внутреннее строение. О строении Земли судят главным образом на основании сейсмических данных - по скорости прохождения волн, возникающих при землетрясениях. Непосредственные наблюдения возможны лишь на небольшую глу­бину: самые глубокие скважины прошли чуть более 12 км земной толщи (Кольская сверхглубокая).

В строении Земли выделяют три основных слоя (рис. 15): земную кору, мантию и ядро.

Рис. 15. Внутреннее строение Земли:

1 - земная кора, 2 - мантия, 3 - астеносфера, 4 - ядро

Земная кора в масштабе Земли это тонкая пленка. Ее средняя мощность около 35 км.

Мантия распространяется до глубины 2900 км. Внутри мантии на глубине 100-250 км под континентами и 50-100 км под океанами начинается слой повышенной пластичности вещества, близ­кой к плавлению, так называе­мая астеносфера. Подошва астеносферы находится на глубинах порядка 400 км. Земная кора вместе с верх­ним твердым слоем мантии над астеносферой называет­ся литосферой (от греч. lithos - камень). Литосфера в отличие от астеносферы относительно хрупкая обо­лочка. Она разбита глубинными разломами на крупные блоки, называемые литосферньши плитами. Плиты медленно перемеща­ются по астеносфере в горизонтальном направлении.

Ядро находится на глубинах от 2900 до 6371 км, т. е. радиус ядра занимает более половины радиуса Земли. Предполагают, по данным сейсмологии, что во внешней части ядра вещества нахо­дятся в расплавленном подвижном состоянии и что в нем из-за вращения планеты возникают электрические токи, которые созда­ют магнитное поле Земли; внутренняя часть ядра - твердая.

С глубиной нарастает давление и температура, которая в ядре, по расчетам, около 5000°С.

Слои Земли имеют разный вещественный состав, что связывают с дифференциацией первичного холодного вещества планеты в условиях его сильного разогрева и частичного расплавления. Предполагают, что при этом более тяжелые элементы (железо, никель и др.) «тонули», а относительно легкие (кремний, алюми­ний) «всплывали». Первые образовали ядро, вторые - земную ко­ру. Из расплава одновременно выделялись газы и пары воды, кото­рые сформировали первичную атмосферу и гидросферу.



Возраст Земли и геологическое летосчисление

Абсолютный возраст Земли, по современным представлениям, принимается равным 4,6 млрд. лет. Возраст древнейших пород Земли - гранито-гнейсов, обнаруженных на суше, около 3,8- 4,0 млрд. лет.

О событиях геологического прошлого в их хронологической последовательности дает представление единая международная геохронологическая шкала (табл. 1). Ее основными временными подразделениями являются эры: архейская, протерозойская, пале­озойская, мезозойская, кайнозойская. Древнейший интервал геологического времени, включающий архей и протерозой, называ­ется докембрием. Он охватывает громадный период времени - почти 90 % всей геологической истории Земли. Далее выделена палеозойская («древняя жизнь») эра (от 570 до 225-230 млн. лет назад), мезозойская («средняя жизнь») эра (от 225-230 до 65-67 млн. лет назад) и кайнозойская («новая жизнь») эра (от 65-67 млн. лет назад до наших дней). Внутри эр выделяются меньшие временные отрезки - периоды.

Н. Келдер в книге «Беспокойная Земля» (М., 1975) для наг­лядного представления о геологическом времени дает такое инте­ресное сравнение: «Если мы условно примем мегастолетие (10 8 лет) за один год, то возраст нашей планеты окажется равным 46 годам. О первых семи годах ее жизни биографам ничего не известно. Сведения же, относящиеся к более позднему «детству», зафиксированы в древнейших породах Гренландии и Южной Аф­рики... Большая часть сведений из истории Земли, в том числе и о таком важном моменте, как возникновение жизни, относится к последним шести годам... До 42-летнего возраста ее континенты были практически безжизненны. На 45-м году жизни-всего лишь год назад - Земля украсилась пышной растительностью. В то время среди

Таблица 1.

Геохронологическая шкала

Эра
(продолжитель-­ Периоды Складчатость Типичные организмы
ность, млн. лет)
Кайнозойская Четвертичный Появление человека
(65+3) Неогеновый Кайнозойская Расцвет фауны мле­-
(альпийская) копитающих и птиц
Палеогеновый Расцвет покрыто­
семенных растений
Мезозойская Меловой Мезозойская Появление птиц
(170+5) Юрский Расцвет гигантских
пресмыкающихся
Триасовый Расцвет голосемен­-
ных растений
Палеозойская Пермский Позднепалео- Морские кораллы,
(340+10) зойская (герцин- трилобиты, крупные
ская) земноводные
Каменноуголь-­
ный
Девонский Раннепалео- Расцвет плауновых
Силурийский зойская (кале- и папоротников
донская)
Ордовикский
Кембрийский
Байкальская
Протерозой Синезеленые водо­- росли, примитивные морские животные
(~2000) Общепринятых
подразделений
Архей нет
(~ 2000)

животных господствовали гигантские рептилии, в частности динозавры. Примерно на этот же период приходится и начало распада последнего гигантского суперконтинента.

Динозавры исчезли с лика Земли восемь месяцев назад. На смену им пришли более высокоорганизованные животные - млеко­питающие. Где-то в середине прошлой недели на территории Африки произошло превращение некоторых человекообразных обезьян в обезьяноподобных людей, а в конце той же недели на Землю обрушилась серия последних грандиозных оледенении. Про­шло немногим более четырех часов с тех пор, как новый род высокоорганизованных животных, известный в дальнейшем как Homo sapiens, начал добывать себе пропитание охотой на диких зверей; и всего лишь час насчитывает его опыт ведения сельского хозяйства и переход к оседлому образу жизни. Расцвет же инду­стриальной мощи человеческого общества приходится на послед­нюю минуту...».

Состав и строение земной коры

Земная кора состоит из магматических, осадочных и метамор­фических горных пород. Магматические породы образуются при извержении магмы из глубинных зон Земли и ее затвердении. Если магма внедряется в земную кору и медленно застывает в условиях высокого давления на глубине, образуются интрузивные горные породы (гранит, габбро и др.), при излиянии ее, и быст­ром застывании на поверхности - эффузивные (базальт, вулкани­ческий туф и др.). С магматическими породами связаны многие полезные ископаемые: титано-магниевые, хромовые, медно-никелевые и другие руды, апатиты, алмазы и др.

Осадочные породы образуются непосредственно на земной по­верхности разными путями: либо за счет жизнедеятельности орга­низмов - органогенные породы (известняк, мел, каменный уголь и др.), либо при разрушении и последующем отложении разных горных пород - обломочные породы (глина, песок, валунные су­глинки и др.), либо за счет химических реакций, происходящих обычно в водной среде, - породы химического происхождения (бокситы, фосфориты, соли, руды некоторых металлов и др.). Многие осадочные породы являются ценными полезными иско­паемыми: нефть, газ, угли, торф, бокситы, фосфориты, соли, руды железа и марганца, разнообразные строительные материалы и др.

Метаморфические породы возникают в результате изменения (метаморфизма) различных горных пород, оказавшихся на глу­бине, под влиянием высоких температур и давления, а также горячих растворов и газов, поднимающихся из мантии (гнейс, мрамор, кристаллические сланцы и др.). В процессе метаморфизма горных пород образуются разнообразные полезные ископаемые: железные, медные, полиметаллические, урановые и другие руды, золото, графит, драгоценные камни, огнеупоры и т. д.

Земная кора сложена в основном кристаллическими породами магматического и метаморфического происхождения. Однако она неоднородна по составу, строению и мощности. Различают два основных типа земной коры: материковую и океанскую. Первая свойственна материкам (континентам), включая их подводные окраины до глубины 3,5-4,0 км ниже уровня Мирового океана, вторая - океаническим котловинам (ложу океана).

Материковая земная кора состоит из трех слоев: осадочного мощностью 20-25 км, гранитного (гранитно-гнейсового) и ба­зальтового. Ее общая мощность около 60-75 км в горных райо­нах, 30-40 км - на равнинах.

Океанская земная кора тоже трехслойная. Сверху залегает маломощный (в среднем около 1 км) слой рыхлых морских осадков кремнисто-карбонатного состава. Под ним слой из базаль­товых лав. Гранитного слоя между осадочным и базальтовым слоями нет (в отличие от материковой коры), что подтверждается многочисленными буровыми скважинами. Третий слой (по данным драгировок) состоит из магматических пород - преимущественно габбро. Общая мощность океанской земной коры в среднем 5- 7 км. Местами на дне Мирового океана (обычно вдоль крупных разломов) на поверхность выступают даже породы верхней мантии.Ими же сложен остров Сан-Паулу у берегов Бра­зилии.

Таким образом, океанская кора и по составу, и по мощности, а также по возрасту (она не старше 160-180 млн. лет) существен­но отличается от материковой. Наряду с этими двумя основными типами земной коры существует несколько вариантов коры пере­ходного типа.

Материки, включая их подводные окраины, и океаны являются самыми крупными структурными элементами земной коры. В их пределах основная площадь принадлежит спокойным платформен­ным участкам, меньшая - подвижным геосинклинальным поясам (геосинклиналям). Эволюция структуры земной коры шла в основ­ном от геосинклиналей к платформам. Но частично этот процесс оказывается обратимым за счет образования рифтов (rift - англ., трещина, разлом) на платформах, их дальнейшего раскры­тия (например, Красное море) и превращения в океан.

Геосинклинали - обширные подвижные сильно расчлененные участки земной коры с разнообразными по интенсивности и на­правленности тектоническими движениями. В развитии геосинкли­налей различают два крупных этапа.

Первый - основной по продолжительности этап - характери­зуется погружением и морским режимом. При этом в глубоком морском бассейне, предопределенном глубинными разломами, на­капливается мощная (до 15-20 км) толща осадочных и вулкани­ческих горных пород. Излияние лав, а также внедрение и застыва­ние на разных глубинах магмы наиболее характерно для внутрен­них частей геосинклиналей. Здесь же энергичнее проявляется и метаморфизм, а впоследствии складчатость. В окраинных частях геосинклинали накапливаются преимущественно осадочные толщи, магматизм ослаблен или даже отсутствует.

Второй этап развития геосинклиналей - меньший по продол­жительности - характеризуется интенсивными восходящими дви­жениями, которые новейшие тектонические гипотезы связывают со сближением и столкновением литосферных плит. Из-за бокового давления происходит энергичное смятие пород в сложные складки и внедрение магмы с образованием главным образом гранита. При этом первичная тонкая океанская кора, благодаря различным де­формациям горных пород, магматизму, метаморфизму и другим процессам, превращается в более сложную по составу, мощную и жесткую континентальную (материковую) земную кору. В резуль­тате поднятия территории море отступает, сначала образуются архипелаги вулканических островов, а потом сложная складчатая горная страна.

В дальнейшем на протяжении десятков - сотен миллионов лет горы разрушаются, участок земной коры на значительной площади покрывается чехлом осадочных пород и превращается в плат­форму.

Платформы - обширные наиболее устойчивые, преимущест­венно равнинные блоки земной коры. Обычно они имеют непра­вильную многоугольную форму, обусловленную крупными разло­мами. Платформы обладают типично континентальной или океаниче­ской земной корой, и соответственно разделяются на материковые и океанские. Им отвечают основные, равнинные ступени рельефа земной поверхности на суше и дне океана. Материковые плат­формы имеют двухъярусное строение. Нижний ярус называют фун­даментом. Он состоит из смятых в складки метаморфических пород, пронизанных застывшей магмой, разбит разломами на блоки. Фундамент сформировался в геосинклинальный этап раз­вития. Верхний ярус - осадочный чехол - сложен преимущест­венно осадочными породами более позднего возраста, залегаю­щими относительно горизонтально. Формирование чехла соответ­ствует платформенному этапу развития.

Участки платформ, где фундамент погружен на глубину под осадочный чехол, называют плитами. Они занимают основную площадь на платформах. Места выхода кристаллического фунда­мента на поверхность называются щитами. Различают древние и молодые платформы. Они отличаются, прежде всего, возрастом складчатого фундамента: у древних платформ он образовался в докембрии, более 1,5 млрд. лет тому назад, у молодых - в пале­озое.

На Земле имеется девять крупных древних докембрийских платформ. Севере- Американская, Восточно-Европейская и Сибир­ская платформы образуют северный ряд, Южно-Американская, Африкано- Аравийская, Индостанская, Австралийская и Антаркти­ческая - южный ряд. До середины мезозоя платформы южного ряда были частью единого суперконтинента Гондвана. Промежу­точное положение занимает Китайская платформа. Существует мнение, что все древние платформы являются обломками огром­ного единого докембрийского массива континентальной коры - Пангеи.

Древние платформы - наиболее устойчивые глыбы в составе материков, поэтому являются их основой, жестким остовом. Они разделены пятью геосинклинальными поясами, возникшими в конце докембрия в связи с расколом Пангеи. Три из них - Севе-ро-Атлантический, Арктический и Урало-Охотский- завершили свое развитие в основном в палеозое. Два - Средиземноморский (Альпийско-Гималайский) и Тихоокеанский - частично продол­жают свое развитие и в современную эпоху.

В пределах геосинклинальных поясов различные его части за­вершали свое развитие в разные тектонические эпохи. В геологиче­ской истории последнего миллиарда лет выделяют несколько тектонических циклов (эпох): байкальский цикл, приуроченный к концу протерозоя - началу палеозоя (1000-550 млн. лет в абсо­лютном летосчислении), каледонский - ранний палеозой (550- 400 млн. лет), герцинский -поздний палеозой (400-210 млн. лет), мезозойский (210-100 млн. лет) и кайнозойский, или аль­пийский (100 млн. лет - до настоящего времени). Соответственно на суше выделяют области байкальской, каледонской, герцинской, мезозойской и кайнозойской (альпийской) складчатостей. Неред­ко их называют байкальскими, каледонскими и другими склад­чатыми поясами.

Условия залегания пород в пределах земной коры отражены на обзорной тектонической карте мира. На ней выделены площади, формирование складчатой структуры которых завершилось в раз­ные этапы складчатости. Они лучше изучены и более достоверно показаны в пределах суши. Древние платформы и обрамляющие их складчатые пояса (области) разного возраста изображены оп­ределенными цветами. Древние платформы (девять крупных и несколько мелких) окрашены в красноватые тона: более яркие - на щитах, менее" яркие - на плитах. Области байкальской склад­чатости показаны сине-голубым цветом, каледонской - сирене­вым, герцинской - коричневым, мезозойской - зеленым и кайно­зойской - желтым цветом.

В областях байкальской, каледонской и герцинской складчато­стей горные сооружения в дальнейшем были существенно раз­рушены. На значительных площадях их складчатые структуры оказались покрытыми сверху континентальными и мелководно-морскими осадочными породами, приобрели устойчивость. В релье­фе они выражены равнинами. Это так называемые молодые плат­формы (например, Западно-Сибирская, Туранская и др.). На тек­тонической карте они изображаются более светлыми оттенками основного цвета того складчатого пояса, в пределах которого на­ходятся. Молодые платформы в отличие от древних не образуют изолированных массивов, а причленяются к древним плат­формам.

Из сопоставления физической и тектонической карт мира следует, что горы в основном соответствуют подвижным складчатым поясам разного возраста, равнины - древним и молодым плат­формам.

Понятие о рельефе. Геологические рельефообразующие процессы

Современный рельеф - совокупность неровностей земной по­верхности разного масштаба. Их называют формами рельефа. Рельеф сформировался в результате взаимодействия внутренних (эндогенных) и внешних (экзогенных) геологических процессов.

Формы рельефа различны по размерам, строению, происхож­дению, истории развития и т. д. Различают выпуклые (положи­тельные) формы рельефа (горный хребет, возвышенность, холм и др.) и вогнутые (отрицательные) формы (межгорная котловина, низменность, овраги и др.).

Крупнейшие формы рельефа - материки и океанические впа­дины и крупные формы - горы и равнины образовались прежде всего за счет деятельности внутренних сил Земли. Средние по раз­мерам и мелкие формы рельефа - речные долины, холмы, овраги, барханы и другие, наложенные на более крупные формы, созда­ны различными внешними силами.

В основе геологических процессов лежат разные источники энергии. Источником внутренних процессов является тепло, обра­зующееся при радиоактивном распаде и гравитационной диффе­ренциации веществ внутри Земли. Источник энергии внешних про­цессов - солнечная радиация, превращающаяся на Земле в энер­гию воды, льда, ветра и т. д.

Внутренние (эндогенные) процессы

С внутренними процессами связаны различные тектонические движения земной коры, создающие основные формы рельефа Зем­ли, магматизм, землетрясения. Тектонические движения прояв­ляются в медленных вертикальных колебаниях земной коры, в образовании складок горных пород и разломов.

Медленные вертикальные колебательные движения - поднятия и опускания земной коры - совершаются непрерывно и повсе­местно, сменяясь во времени и пространстве на протяжении всей геологической истории. Они свойственны платформам. С ними свя­зано наступление моря и соответственно изменение очертаний материков и океанов. Например, в настоящее время медленно под­нимается Скандинавский полуостров, но опускается южное побе­режье Северного моря. Скорость этих движений до нескольких миллиметров в год.

Под складчатыми тектоническими нарушениями пластов гор­ных пород подразумеваются изгибы слоев без нарушения их сплошности. Складки различаются по размерам, причем мелкие нередко осложняют крупные, по форме, по происхождению и т. д.

К разрывным тектоническим нарушениям пластов горных по­род относятся разломы. Они могут быть различными по глубине (либо в пределах земной коры, либо рассекать ее и уходить в ман­тию до 700 км), по протяженности, длительности развития, без смещения участков земной коры или со смещением блоков земной коры в горизонтальном и вертикальном направлениях и т. д.

Складчатые и разрывные деформации (нарушения) пластов земной коры на фоне общего тектонического поднятия территории приводят к образованию гор. Поэтому складчатые и разрывные движения объединяют под общим названием орогенических (от греч. ого - гора, genos - рождение), т. е. движений, создающих горы (орогены).

При горообразовании темпы поднятия всегда интенсивнее про­цессов разрушения и сноса материала.

Складчатые и разрывные тектонические движения сопровожда­ются, особенно в горах, магматизмом, метаморфизмом горных пород и землетрясениями.

Магматизм связан прежде всего с глубинными разломами, пе­ресекающими земную кору и уходящими в мантию. В зависимости от степени проникновения магмы из мантии в земную кору он под­разделяется на два типа: интрузивный, когда магма, не достигая поверхности Земли, застывает на глубине, и эффузивный, или вул­канизм, когда магма прорывает земную кору и изливается на зем­ную поверхность. При этом из нее выделяется много газов, перво­начальный состав изменяется, и она превращается в лаву. Состав лав весьма разнообразен. Излияния происходят либо по трещинам (этот тип извержения преобладал на первоначальных этапах фор­мирования Земли), либо через узкие каналы на пересечении раз­ломов, называемые жерлами.

При трещинных излияниях образуются обширные лавовые пок­ровы (на плато Декан, на Армянском и Эфиопском нагорьях, на Среднесибирском плоскогорье и т.д.). В историческое время зна­чительные излияния лав происходили на Гавайских островах, в Исландии, они весьма характерны для срединно-океанических хребтов.

Если магма поднимается по жерлу, то при излияниях, обычно многократных, образуются возвышения - вулканы с воронкообраз­ным расширением наверху, называемым кратером. Большинство вулканов имеет конусовидную форму и состоит из рыхлых продук­тов извержений, переслаивающихся с застывшей лавой. Например, Ключевская Сопка, Фудзияма, Эльбрус, Арарат, Везувий, Кракатау, Чимбарасо и др. Вулканы делятся на действующие (их более 600) и потухшие. Большинство действующих вулканов расположе­но среди молодых гор кайнозойской складчатости. Много их и вдоль крупных разломов в тектонически подвижных областях, в том числе на дне океанов вдоль осей срединно-океанических хреб­тов. Вдоль побережья Тихого океана располагается основная зона вулканов - Тихоокеанское огненное кольцо, где более 370 дейст­вующих вулканов (на востоке Камчатки и др.).

В местах затухания вулканической деятельности характерны горячие источники, в том числе периодически фонтанирующие - гейзеры, выбросы газов из кратеров и трещин, которые свидетель­ствуют об активных процессах в глубине недр.

Вулканические извержения позволяют ученым заглянуть на де­сятки километров в глубь Земли, понять тайны образования мно­гих видов полезных ископаемых. Сотрудники вулканологических.станций несут круглосуточную вахту, чтобы своевременно предска­зать начало извержений вулканов и предупредить связанные с ни­ми стихийные бедствия. Обычно наибольший ущерб приносят не столько потоки лавы, сколько грязевые потоки. Они возникают вследствие быстрого таяния ледников и снега на вершинах вулканов и ливневых осадков из мощных облаков на свежий вулканический «пепел», состоящий из обломков и пыли. Скорость движения пото­ков грязи может достигать 70 км/ч и распространяться на рас­стояние до 180 км. Так, в результате извержения вулкана Руис в Колумбии 13 ноября 1985 г. лава растопила сотни тысяч кубиче­ских метров снега. Образовавшиеся грязевые потоки поглотили город Армеро с населением 23 тыс. человек.

С эндогенными процессами связаны также землетрясения - внезапные подземные удары, сотрясения и смещения пластов и блоков земной коры. Очаги землетрясений приурочены к зонам разломов. В большинстве случаев центры землетрясений находятся на глубине первых десятков киломеров в земной коре. Однако иногда они лежат в верхней мантии на глубине до 600-700 км, например вдоль побережья Тихого океана, в Карибском море и других районах. Возникающие в очаге упругие волны, достигая поверхности, вызывают образование трещин, колебание ее вверх - вниз, смещение в горизонтальном направлении. Так, вдоль наибо­лее изученного разлома Сан-Андреас в Калифорнии (длина более 1000 км, проходит вдоль Калифорнийского залива до г. Сан-Фран­циско) общее горизонтальное смещение пород с момента его зало­жения в юре до настоящего времени оценивается в 580 км. Сред­няя скорость смещения сейчас до 1,5 см/год. С ним связаны час­тые землетрясения. Интенсивность землетрясений оценивается по двенадцатибалльной шкале на основании деформаций слоев Зем­ли и степени повреждения зданий. Ежегодно на Земле регистри­руют сотни тысяч землетрясений, т. е. мы живем на беспокойной планете. При катастрофических землетрясениях в считанные секунды изменяется рельеф, в горах происходят обвалы и ополз­ни, разрушаются города, гибнут люди. Землетрясения на побе­режьях и дне океанов вызывают волны - цунами. К числу ката­строфических землетрясений последних десятилетий относятся: Ашхабадское (1948), Чилийское (I960), Ташкентское (1966), в Мехико (1985), Армянское (1988). Извержения вулканов тоже сопровождаются землетрясениями, но эти землетрясения носят ограниченный характер.

Внешние (экзогенные) процессы

На рельеф земной поверхности помимо внутренних процессов одновременно воздействуют и различные внешние силы. Деятель­ность любого внешнего фактора складывается из процессов раз­рушения и сноса пород (денудация) и отложения материала в понижениях (аккумуляция). Этому предшествуетвыветривание - процесс разрушения горных пород под влиянием резкого колеба­ния температур и замерзания воды в трещинах породы, а также химического изменения их состава под влиянием воздуха и воды, содержащей кислоты, щелочи и соли. В выветривании принимают участие и живые организмы. Выделяют два основных вида вывет­ривания: физическое и химическое. В результате выветривания горных пород образуются рыхлые отложения, удобные для пере­мещения водой, льдом, ветром и т. д.

Главнейшим внешним процессом на земной поверхности явля­ется деятельность текучейводы. Она практически повсеместна, за исключением полярных районов и гор, покрытых ледниками, и ограничена в пустынях. За счет текучей воды происходит общее понижение поверхности под влиянием сноса почвы и горных по­род, образуются такие эрозионные формы рельефа, как овраги, балки, речные долины, а также аккумулятивные формы - конусы выноса балок и оврагов, дельты рек.

Овраги - вытянутые углубления с крутыми незадернованными склонами и растущей вершиной. Создаются они временными во­дотоками. Их образованию помимо природных факторов (наличия склонов, легко размываемых грунтов, обильных осадков, бурного снеготаяния и др.) способствует человек своей нерациональной дея­тельностью (сведение лесов и лугов, распашка склонов, особенно сверху вниз, и др.).

Балки в отличие от оврагов прекратили свой рост, склоны их обычно менее крутые, занятые лугами и лесами. Овражно-балочный рельеф весьма характерен для Среднерусской, Приволжской и других возвышенностей. Он господствует на Высоких равнинах в США, на плато Ордос в Китае и др. Овраги и балки создают трудности для сельскохозяйственного освоения территории, до­рожного и иного строительства, понижают уровень грунтовых вод, вызывают другие негативные следствия.

В горах большой разрушительной силой обладают временные грязе-каменные потоки, называемые селями. Содержание твердого материала в них может достигать 75 % общей массы потока. Сели перемещают к подножиям гор огромное количество обломочного материала. С селями связаны катастрофические разрушения селе­ний, дорог, плотин.

Большую постоянную, разрушительную работу, как в горах, так и на равнинах производятреки. В горах, используя межгорные долины и тектонические разломы, они образуют глубокие узкие речные долины с крутыми склонами типа ущелий, на которых раз­виваются различные склоновые процессы, снижающие горы. На равнинах реки тоже производят активную работу, подмывая скло­ны и расширяя долину до десятков километров в ширину. В отли­чие от горных рек у них есть пойма. Склоны речных долин на равнинах обычно имеют надпойменные террасы - прежние пой­мы, свидетельствующие о периодическом врезании рек. Поймы и русла рек служат теми уровнями, к которым «привязаны» овраги и балки. Поэтому понижение их вызывает рост и врезание овра­гов, увеличение крутизны прилегающих к ним склонов, смыв почв и т. д.

Поверхностные текучие воды на протяжении длительного гео­логического времени способны произвести грандиозную разруши­тельную работу в горах и на равнинах. Именно с ними в первую очередь связано образование равнин на месте некогда горных стран.

Определенную разрушительную работу в горах и на равнинах производятледники. Они занимают около 11 % суши. Более 98 % современного оледенения приходится на покровные ледники Ан­тарктиды, Гренландии и полярных островов и только около 2 % на горные ледники. Мощность покровных ледников до 2-3 км и бо­лее. В горах ледники занимают плоские вершины, понижения на склонах и межгорные долины. Долинные ледники удаляют с гор весь тот материал, который поступает на его поверхность со скло­нов, и тот, который он выпахивает при движении по подледному ложу. Транспортируемый ледником материал в виде несортиро­ванного суглинка и супеси с валунами, так называемой морены, откладывается у края ледника, а потом реками, начинающимися у края ледников, выносится к подножию гор.

Во время максимального четвертичного оледенения площадь ледников на равнинах была в три раза больше, чем сейчас, а гор­ные ледники в субполярных и умеренных широтах спускались до подножий.

Во время четвертичных оледенений центрами и областями лед­никового сноса были Скандинавские горы, Полярный Урал, север Скалистых гор, а также возвышенности Кольского полуострова, Карелии, полуострова Лабрадор и др. Здесь встречаются отполи­рованные ледником выступы твердых кристаллических пород в виде холмов, которые называют бараньими лбами, продолговатые по направлению движения ледника котловины выпахивания и др. Южнее, на расстоянии 1000-2000 км от центров оледенений, располагаются области ледниковых наносов в виде беспорядочных холмистых и грядовых нагромождений, сохранившихся до настоя­щего времени. Следовательно, на равнинах покровные ледники производили не только разрушительную, но и созидательную ра­боту.

Ветер - повсеместный фактор на Земле. Однако полнее всего его разрушительная и созидательная работа проявляется в пусты­нях. Там сухо, почти отсутствует растительность, много рыхлых сыпучих частиц - продуктов интенсивного физического выветри­вания, обусловленного резким перепадом температур в течение суток. Формы рельефа, созданные ветром, называются эоловыми (по имени греческого бога Эола - повелителя ветров). В каменис­тых пустынях ветер не только выдувает мелкие частицы, обра­зующиеся за счет процессов разрушения. Ветропесчаный поток обтачивает скалы, придает им причудливые формы и в конце кон­цов разрушает их и выравнивает поверхность.

В песчаных пустынях ветер образует барханы - холмы серпо­видной формы, движущиеся со скоростью до 50 м/год, а также гряды, бугры и другие эоловые формы, закрепленные растительно­стью. На побережьях морей и рек дневной бриз образует песча­ные холмы - дюны (например; на побережье Бискайского залива во Франции, по южному побережью Балтийского моря, где они заросли сосновыми лесами и вереском).

В распаханных степных и полупустынных районах с неустойчи­вым увлажнением нередки пыльные бури, во время которых верхний слой почвы вместе с семенами, иногда и всходами -срывается сильными ветрами и переносится на десятки километров от места сноса и откладывается перед препятствиями или в понижениях, где стихает сила ветра.

Определенную лепту в изменение земной поверхности вносят подземные воды, растворяя некоторые горные породы, вечная мерзлота, волноприбойная деятельность на морских побережьях, а также человек.

Таким образом, рельеф Земли формируется за счет внутрен­них и внешних сил - вечных антагонистов. Внутренние процессы создают основные неровности на поверхности Земли, а внешние процессы за счет разрушения выпуклых форм и накопления ма­териала в вогнутых формах стремятся их уничтожить, выровнять земную поверхность.

Земля относится к планетам земной группы, и, в отличие от газовых гигантов, таких как Юпитер, имеет твёрдую поверхность. Это крупнейшая из четырёх планет земной группы в Солнечной системе , как по размеру, так и по массе. Кроме того, Земля среди этих четырёх планет имеет наибольшие плотность, поверхностную гравитацию и магнитное поле . Это единственная известная планета с активной тектоникой плит.

Недра Земли делятся на слои по химическим и физическим (реологическим) свойствам, но в отличие от других планет земной группы, Земля имеет ярко выраженное внешнее и внутреннее ядро. Наружный слой Земли представляет собой твёрдую оболочку, состоящую главным образом из силикатов. От мантии она отделена границей с резким увеличением скоростей продольных сейсмических волн — поверхностью Мохоровичича. Твёрдая кора и вязкая верхняя часть мантии составляют литосферу. Под литосферой находится астеносфера , слой относительно низкой вязкости, твёрдости и прочности в верхней мантии .

Значительные изменения кристаллической структуры мантии происходят на глубине 410-660 км ниже поверхности, охватывающей переходную зону, которая отделяет верхнюю и нижнюю мантию. Под мантией находится жидкий слой, состоящий из расплавленного железа с примесями никеля, серы и кремния — ядро Земли. Сейсмические измерения показывают, что оно состоит из 2 частей: твёрдого внутреннего ядра с радиусом ~1220 км и жидкого внешнего ядра, с радиусом ~ 2250 км.

Форма

Форма Земли (геоид) близка к сплюснутому эллипсоиду. Расхождение геоида с аппроксимирующим его эллипсоидом достигает 100 метров.

Вращение Земли создаёт экваториальную выпуклость, поэтому экваториальный диаметр на 43 км больше, чем полярный. Высочайшей точкой поверхности Земли является гора Эверест (8848 м над уровнем моря), а глубочайшей — Марианская впадина (10 994 м под уровнем моря). Из-за выпуклости экватора самыми удалёнными точками поверхности от центра Земли являются вершина вулкана Чимборасо в Эквадоре и гора Уаскаран в Перу.

Химический состав

Масса Земли приблизительно равна 5,9736·1024 кг. Общее число атомов, составляющих Землю, ≈ 1,3-1,4·1050. Она состоит в основном из железа (32,1 %), кислорода (30,1 %), кремния (15,1 %), магния (13,9 %), серы (2,9 %), никеля (1,8 %), кальция (1,5 %) и алюминия (1,4 %); на остальные элементы приходится 1,2 %. Из-за сегрегации по массе область ядра, предположительно, состоит из железа (88,8 %), небольшого количества никеля (5,8 %), серы (4,5 %) и около 1 % других элементов. Примечательно, что углерода , являющегося основой жизни, в земной коре всего 0,1 %.


Геохимик Франк Кларк вычислил, что земная кора чуть более, чем на 47 % состоит из кислорода. Наиболее распространённые породообразующие минералы земной коры практически полностью состоят из оксидов ; суммарное содержание хлора, серы и фтора в породах обычно составляет менее 1 %. Основными оксидами являются кремнезём (SiO 2), глинозём (Al 2 O 3), оксид железа (FeO), окись кальция (CaO), окись магния (MgO), оксид калия (K 2 O) и оксид натрия (Na 2 O). Кремнезём служит главным образом кислотной средой, формирует силикаты; природа всех основных вулканических пород связана с ним.

Внутреннее строение

Земля, как и другие планеты земной группы, имеет слоистое внутреннее строение. Она состоит из твёрдых силикатных оболочек (коры, крайне вязкой мантии), и металлического ядра. Внешняя часть ядра жидкая (значительно менее вязкая, чем мантия), а внутренняя — твёрдая.

Внутреннее тепло

Внутренняя теплота планеты обеспечивается сочетанием остаточного тепла, оставшегося от аккреции вещества, которая происходила на начальном этапе формирования Земли (около 20 %) и радиоактивным распадом нестабильных изотопов: калия-40 , урана-238 , урана-235 и тория-232. У трёх из перечисленных изотопов период полураспада составляет более миллиарда лет. В центре планеты, температура, возможно, поднимается до 6000 °С (10,830 °F) (больше, чем на поверхности Солнца), а давление может достигать 360 ГПа (3,6 млн атм). Часть тепловой энергии ядра передаётся к земной коре посредством плюмов. Плюмы приводят к появлению горячих точек и траппов. Поскольку большая часть тепла, производимого Землёй, обеспечивается радиоактивным распадом, то в начале истории Земли, когда запасы короткоживущих изотопов ещё не были истощены, энерговыделение нашей планеты было гораздо больше, чем сейчас.

Больше всего энергии теряется Землёй посредством тектоники плит, подъёма вещества мантии на срединно-океанические хребты. Последним основным типом потерь тепла является теплопотеря сквозь литосферу, причём большее количество теплопотерь таким способом происходит в океане, так как земная кора там гораздо тоньше, чем под континентами.

Литосфера

Атмосфера

Атмосфера (от. др.-греч. ?τμ?ς — пар и σφα?ρα — шар) — газовая оболочка, окружающая планету Земля; состоит из азота и кислорода, со следовыми количествами водяного пара, диоксида углерода и других газов. С момента своего образования она значительно изменилась под влиянием биосферы . Появление оксигенного фотосинтеза 2,4-2,5 млрд лет назад способствовало развитию аэробных организмов, а также насыщению атмосферы кислородом и формированию озонового слоя, который оберегает всё живое от вредных ультрафиолетовых лучей.

Атмосфера определяет погоду на поверхности Земли, защищает планету от космических лучей, и частично — от метеоритных бомбардировок. Она также регулирует основные климатообразующие процессы: круговорот воды в природе, циркуляцию воздушных масс, переносы тепла. Молекулы атмосферных газов могут захватывать тепловую энергию, мешая ей уйти в открытый космос, тем самым повышая температуру планеты. Это явление известно как парниковый эффект. Основными парниковыми газами считаются водяной пар, двуокись углерода, метан и озон. Без этого эффекта теплоизоляции средняя поверхностная температура Земли составила бы от −18 до −23 °C (при том, что в действительности она равна 14,8 °С), и жизнь скорее всего не существовала бы.

В нижней части атмосферы содержится около 80 % общей её массы и 99 % всего водяного пара (1,3-1,5·1013 т), этот слой называется тропосферой . Его толщина неодинакова и зависит от типа климата и сезонных факторов: так, в полярных регионах она составляет около 8-10 км, в умеренном поясе до 10-12 км, а в тропических или экваториальных доходит до 16-18 км. В этом слое атмосферы температура опускается в среднем на 6 °С на каждый километр при движении в высоту. Выше располагается переходный слой — тропопауза, отделяющий тропосферу от стратосферы. Температура здесь находится в пределах 190-220 K.

Стратосфера — слой атмосферы, который расположен на высоте от 10-12 до 55 км (в зависимости от погодных условий и времени года). На него приходится не более 20 % всей массы атмосферы. Для этого слоя характерно понижение температуры до высоты ~25 км, с последующим повышением на границе с мезосферой почти до 0 °С. Эта граница называется стратопаузой и находится на высоте 47-52 км. В стратосфере отмечается наибольшая концентрация озона в атмосфере, который оберегает все живые организмы на Земле от вредного ультрафиолетового излучения Солнца. Интенсивное поглощение солнечного излучения озоновым слоем и вызывает быстрый рост температуры в этой части атмосферы.

Мезосфера расположена на высоте от 50 до 80 км над поверхностью Земли, между стратосферой и термосферой. Она отделена от этих слоёв мезопаузой (80-90 км). Это самое холодное место на Земле, температура здесь опускается до −100 °C. При такой температуре вода, содержащаяся в воздухе, быстро замерзает, иногда формируя серебристые облака. Их можно наблюдать сразу после захода Солнца, но наилучшая видимость создаётся, когда оно находится от 4 до 16° ниже горизонта. В мезосфере сгорает большая часть метеоритов, проникающих в земную атмосферу. С поверхности Земли они наблюдаются как падающие звёзды. На высоте 100 км над уровнем моря находится условная граница между земной атмосферой и космосом — линия Кармана .

В термосфере температура быстро поднимается до 1000 К, это связано с поглощением в ней коротковолнового солнечного излучения. Это самый протяжённый слой атмосферы (80-1000 км). На высоте около 800 км рост температуры прекращается, поскольку воздух здесь очень разрежён и слабо поглощает солнечную радиацию.

Ионосфера включает в себя два последних слоя. Здесь происходит ионизация молекул под действием солнечного ветра и возникают полярные сияния.

Экзосфера — внешняя и очень разреженная часть земной атмосферы. В этом слое частицы способны преодолевать вторую космическую скорость Земли и улетучиваться в космическое пространство. Это вызывает медленный, но устойчивый процесс, называемый диссипацией (рассеянием) атмосферы. В космос ускользают в основном частицы лёгких газов: водорода и гелия. Молекулы водорода, имеющие самую низкую молекулярную массу, могут легче достигать второй космической скорости и утекать в космическое пространство более быстрыми темпами, чем другие газы. Считается, что потеря восстановителей, например водорода, была необходимым условием для возможности устойчивого накопления кислорода в атмосфере. Следовательно, свойство водорода покидать атмосферу Земли, возможно, повлияло на развитие жизни на планете. В настоящее время большая часть водорода, попадающая в атмосферу, преобразуется в воду, не покидая Землю, а потеря водорода происходит в основном от разрушения метана в верхних слоях атмосферы.

Химический состав атмосферы

У поверхности Земли осушенный воздух содержит около 78,08 % азота (по объёму), 20,95 % кислорода, 0,93 % аргона и около 0,03 % углекислого газа. Объемная концентрация компонентов зависит от влажности воздуха — содержания в нём водяного пара, которое колеблется от 0,1 до 1,5 % в зависимости от климата, времени года, местности. Например, при 20 °С и относительной влажности 60 % (средняя влажность комнатного воздуха летом) концентрация кислорода в воздухе составляет 20,64 %. На долю остальных компонентов приходится не более 0,1 %: это водород, метан, оксид углерода, оксиды серы и оксиды азота и другие инертные газы, кроме аргона.

Также в воздухе всегда присутствуют твёрдые частицы (пыль — это частицы органических материалов, пепел, сажа, пыльца растений и др., при низких температурах — кристаллы льда) и капли воды (облака, туман) — аэрозоли. Концентрация твёрдых частиц пыли уменьшается с высотой. В зависимости от времени года, климата и местности концентрация частиц аэрозолей в составе атмосферы изменяется. Выше 200 км основной компонент атмосферы — азот. На высоте свыше 600 км преобладает гелий, а от 2000 км — водород («водородная корона»).

Биосфера

Биосфера (от др.-греч. βιος — жизнь и σφα?ρα — сфера, шар) — это совокупность частей земных оболочек (лито-, гидро- и атмосферы), которая заселена живыми организмами, находится под их воздействием и занята продуктами их жизнедеятельности. Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими. Она начала формироваться не ранее, чем 3,8 млрд лет назад, когда на нашей планете стали зарождаться первые организмы. Она включает в себя всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает несколько миллионов видов растений, животных, грибов и микроорганизмов.

Биосфера состоит из экосистем, которые включают в себя сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющие обмен веществом и энергией между ними. На суше они разделены главным образом географическими широтами, высотой над уровнем моря и различиями по выпадению осадков. Наземные экосистемы, находящиеся в Арктике или Антарктике, на больших высотах или в крайне засушливых районах, относительно бедны растениями и животными; разнообразие видов достигает пика во влажных тропических лесах экваториального пояса.

Магнитное поле Земли

Магнитное поле Земли в первом приближении представляет собой диполь, полюсы которого расположены рядом с географическими полюсами планеты. Поле формирует магнитосферу, которая отклоняет частицы солнечного ветра. Они накапливаются в радиационных поясах — двух концентрических областях в форме тора вокруг Земли. Около магнитных полюсов эти частицы могут «высыпаться» в атмосферу и приводить к появлению полярных сияний.

Согласно теории «магнитного динамо», поле генерируется в центральной области Земли, где тепло создаёт протекание электрического тока в жидком металлическом ядре. Это в свою очередь приводит к возникновению у Земли магнитного поля. Конвекционные движения в ядре являются хаотичными; магнитные полюсы дрейфуют и периодически меняют свою полярность. Это вызывает инверсии магнитного поля Земли, которые возникают в среднем несколько раз за каждые несколько миллионов лет. Последняя инверсия произошла приблизительно 700 000 лет назад.

Магнитосфера — область пространства вокруг Земли, которая образуется, когда поток заряженных частиц солнечного ветра отклоняется от своей первоначальной траектории под воздействием магнитного поля. На стороне, обращённой к Солнцу, толщина её головной ударной волны составляет около 17 км и расположена она на расстоянии около 90 000 км от Земли. На ночной стороне планеты магнитосфера вытягивается, приобретая длинную цилиндрическую форму.

Когда заряженные частицы высокой энергии сталкиваются с магнитосферой Земли, то появляются радиационные пояса (пояса Ван Аллена). Полярные сияния возникают когда солнечная плазма достигает атмосферы Земли в районе магнитных полюсов.